def prepare(args): idim = 10 odim = len(args.char_list) model = E2E(idim, odim, args) batchsize = 2 x = torch.randn(batchsize, 15, idim) ilens = [15, 10] n_token = odim - 2 # w/o <eos>/<sos>, <mask> y = (torch.rand(batchsize, 10) * n_token % n_token).long() olens = [7, 6] for i in range(batchsize): x[i, ilens[i]:] = -1 y[i, olens[i]:] = model.ignore_id data = [] for i in range(batchsize): data.append(( "utt%d" % i, { "input": [{ "shape": [ilens[i], idim] }], "output": [{ "shape": [olens[i]] }], }, )) return model, x, torch.tensor(ilens), y, data
def add_arguments(parser): """Add arguments.""" E2ETransformer.add_arguments(parser) E2E.add_conformer_arguments(parser) return parser
def add_arguments(parser): """Add arguments.""" E2EASR.add_arguments(parser) E2EASRMIX.encoder_mix_add_arguments(parser) return parser
def add_arguments(parser): """Add arguments.""" E2ETransformer.add_arguments(parser) E2E.add_maskctc_arguments(parser) return parser
def add_arguments(parser): """Add arguments.""" E2ETransformer.add_arguments(parser) E2E.add_hopfield_arguments(parser) return parser