Пример #1
0
	def __init__(self, _num, _mapTopic, _algorithmName):
		# Initialise fields
		self.estimatedpose =  PoseWithCovarianceStamped()
		self.occupancy_map = OccupancyGrid()
		self.particlecloud =  PoseArray()
		self.tf_message = tfMessage()
		self.weights = []
		self.maxWeight = 0
		self.totalWeight = 0
		self.num = _num
		self.clusterTask = ClusterTask()
		self.floorName = _mapTopic
		self.exploded = False

		# Initialise objects
		self.cloud = UpdateParticleCloud()
		self.estimate = EstimatePose()
		self.init = InitialiseCloud()

		self._weighted_particle_publisher = rospy.Publisher("/weightedParticles", WeightedParticles)
		
		# Parameters
		self.ODOM_ROTATION_NOISE = 0 		# Odometry model rotation noise
		self.ODOM_TRANSLATION_NOISE = 0 	# Odometry x axis (forward) noise
		self.ODOM_DRIFT_NOISE = 0 			# Odometry y axis (side-side) noise
		self.NUMBER_PREDICTED_READINGS = 20

		# Set 'previous' translation to origin
		# All Transforms are given relative to 0,0,0, not in absolute coords.
		self.prev_odom_x  = 0.0 # Previous odometry translation from origin
		self.prev_odom_y = 0.0  # Previous odometry translation from origin
		self.prev_odom_heading = 0.0 # Previous heading from odometry data
		self.last_odom_pose = None

		# Request robot's initial odometry values to be recorded in prev_odom
		self.odom_initialised = False
		self.sensor_model_initialised = False

		# Set default initial pose to initial position and orientation.
		self.estimatedpose.pose.pose.position.x = self.INIT_X
		self.estimatedpose.pose.pose.position.y = self.INIT_Y
		self.estimatedpose.pose.pose.position.z = self.INIT_Z
		self.estimatedpose.pose.pose.orientation = rotateQuaternion(Quaternion(w=1.0),self.INIT_HEADING)

		# NOTE: Currently not making use of covariance matrix

		self.estimatedpose.header.frame_id = "/map"
		self.particlecloud.header.frame_id = "/map"

		# Sensor model
		self.sensor_model =  sensor_model.SensorModel()

		print(_algorithmName)

		# What algorithm do we use?
		if _algorithmName == "async":
			self.asynchronous = True
		elif _algorithmName == "sync":
			self.asynchronous = False
		else:
			print("Invalid argument 3: expected \"sync\" or \"async\"")
			sys.exit(1)

		# Free Point where Robot can be
		self.listFreePoints = []
Пример #2
0
class PFLocaliserBase(object):

	INIT_X = 10 		# Initial x location of robot (metres)
	INIT_Y = 5			# Initial y location of robot (metres)
	INIT_Z = 0 			# Initial z location of robot (metres)
	INIT_HEADING = 0 	# Initial orientation of robot (radians)

	def __init__(self, _num, _mapTopic, _algorithmName):
		# Initialise fields
		self.estimatedpose =  PoseWithCovarianceStamped()
		self.occupancy_map = OccupancyGrid()
		self.particlecloud =  PoseArray()
		self.tf_message = tfMessage()
		self.weights = []
		self.maxWeight = 0
		self.totalWeight = 0
		self.num = _num
		self.clusterTask = ClusterTask()
		self.floorName = _mapTopic
		self.exploded = False

		# Initialise objects
		self.cloud = UpdateParticleCloud()
		self.estimate = EstimatePose()
		self.init = InitialiseCloud()

		self._weighted_particle_publisher = rospy.Publisher("/weightedParticles", WeightedParticles)
		
		# Parameters
		self.ODOM_ROTATION_NOISE = 0 		# Odometry model rotation noise
		self.ODOM_TRANSLATION_NOISE = 0 	# Odometry x axis (forward) noise
		self.ODOM_DRIFT_NOISE = 0 			# Odometry y axis (side-side) noise
		self.NUMBER_PREDICTED_READINGS = 20

		# Set 'previous' translation to origin
		# All Transforms are given relative to 0,0,0, not in absolute coords.
		self.prev_odom_x  = 0.0 # Previous odometry translation from origin
		self.prev_odom_y = 0.0  # Previous odometry translation from origin
		self.prev_odom_heading = 0.0 # Previous heading from odometry data
		self.last_odom_pose = None

		# Request robot's initial odometry values to be recorded in prev_odom
		self.odom_initialised = False
		self.sensor_model_initialised = False

		# Set default initial pose to initial position and orientation.
		self.estimatedpose.pose.pose.position.x = self.INIT_X
		self.estimatedpose.pose.pose.position.y = self.INIT_Y
		self.estimatedpose.pose.pose.position.z = self.INIT_Z
		self.estimatedpose.pose.pose.orientation = rotateQuaternion(Quaternion(w=1.0),self.INIT_HEADING)

		# NOTE: Currently not making use of covariance matrix

		self.estimatedpose.header.frame_id = "/map"
		self.particlecloud.header.frame_id = "/map"

		# Sensor model
		self.sensor_model =  sensor_model.SensorModel()

		print(_algorithmName)

		# What algorithm do we use?
		if _algorithmName == "async":
			self.asynchronous = True
		elif _algorithmName == "sync":
			self.asynchronous = False
		else:
			print("Invalid argument 3: expected \"sync\" or \"async\"")
			sys.exit(1)

		# Free Point where Robot can be
		self.listFreePoints = []

	def initialise_particle_cloud(self, initialpose):
		"""
		Called whenever an initialpose message is received (to change the
		starting location of the robot), or a new occupancy_map is received.

		:Args:
			| initialpose: the initial pose estimate
		:Return:
			| (geometry_msgs.msg.PoseArray) poses of the particles
		"""
		raise NotImplementedError()

	def update_filter(self, scan, map_topic, numParticles, lock):
		"""
		Called whenever there is a new LaserScan message.
		This calls update methods (implemented by subclass) to do actual
		particle filtering, given the map and the LaserScan, and then updates
		Transform tf appropriately.

		:Args:
			|  scan (sensor_msgs.msg.LaserScan) latest laser scan to resample
				the particle filter based on
		"""
		if not self.sensor_model_initialised:
			self.sensor_model.set_laser_scan_parameters(self.NUMBER_PREDICTED_READINGS, scan.range_max, len(scan.ranges), scan.angle_min, scan.angle_max)
			self.sensor_model_initialised = True
		with lock:
			#print("CALLED________________________________")
			t = time.time()
			# Call user-implemented particle filter update method
			#self.update_particle_cloud(scan)

			#SERVER CODE
			if self.asynchronous: 
				self.update_particle_cloud(scan)
			else:
				self.cloud.weight_particles(scan, self)
				# Get particle cloud and weights and publish it
				pWeights = WeightedParticles()
				pWeights.poseArray.header.frame_id = map_topic
				pWeights.poseArray.header.seq = 1
				pWeights.poseArray.header.stamp = rospy.get_rostime()
				pWeights.poseArray.poses = self.particlecloud.poses
				pWeights.array = self.weights
				pWeights.maxWeight = self.maxWeight
				pWeights.totalWeight = self.totalWeight
				pWeights.reinit = self.exploded
				#rospy.loginfo("SENDING FROM: " + map_topic)
				self._weighted_particle_publisher.publish(pWeights)

				resampledParticles = []
				reinit = None
				loop = True
				try:
					while loop:
						pArray = rospy.wait_for_message("/updatedCloud", Particles, 2)
						#rospy.loginfo("MESSAGE FROM: " + pArray.particles.header.frame_id)
						#rospy.loginfo("EXPECTED: " + map_topic)
						if pArray.particles.header.frame_id == map_topic:
							loop = False
							resampledParticles = pArray.particles.poses
							reinit = pArray.reinit
							if reinit:
								self.particlecloud = self.reinitialise_cloud(self.estimatedpose.pose.pose, 0, False)
							else:
								self.particlecloud = self.cloud.smudge_amcl(resampledParticles)
						
				except:
					rospy.loginfo("TIMED OUT WAITING FOR MESSAGE")

			self.particlecloud.header.frame_id = map_topic
			self.estimatedpose.pose.pose = self.estimate_pose()
						
			# Publish the estimated pose
			floorName = self.floorName
			estimatedPose = self.estimatedpose.pose.pose
			largestClusterSize = self.estimate.dbscan_largestclustersize()
			self.clusterTask.publish(floorName, estimatedPose, largestClusterSize, len(self.particlecloud.poses))
			currentTime = rospy.Time.now()
						
			# Given new estimated pose, now work out the new transform
			self.recalculate_transform(currentTime)
						
			# Insert correct timestamp in particlecloud and estimatedpose,
			# so extending subclasses don't need to worry about this, but can
			# just concentrate on updating actual particle and pose locations
			self.particlecloud.header.stamp = currentTime
			self.estimatedpose.header.stamp = currentTime

			return time.time()-t

	def update_particle_cloud(self, scan):
		"""
		This should use the supplied laser scan to update the current
		particle cloud. I.e. self.particlecloud should be updated.

		:Args:
			| scan (sensor_msgs.msg.LaserScan): laser scan to use for update

		"""
		raise NotImplementedError()

	def reinitialise_cloud(self, initialpose, ratio, random):

		raise NotImplementedError()


	def estimate_pose(self):
		"""
		This should calculate and return an updated robot pose estimate based
		on the particle cloud (self.particlecloud).

		:Return:
			| (geometry_msgs.msg.Pose) robot's estimated pose.
		"""
		raise NotImplementedError()


	def recalculate_transform(self, currentTime):
		"""
		Creates updated transform from /odom to /map given recent odometry and
		laser data.

		:Args:
			| currentTime (rospy.Time()): Time stamp for this update
		"""

		transform = Transform()

		T_est = transformations.quaternion_matrix([self.estimatedpose.pose.pose.orientation.x,self.estimatedpose.pose.pose.orientation.y,self.estimatedpose.pose.pose.orientation.z,self.estimatedpose.pose.pose.orientation.w])
		T_est[0, 3] = self.estimatedpose.pose.pose.position.x
		T_est[1, 3] = self.estimatedpose.pose.pose.position.y
		T_est[2, 3] = self.estimatedpose.pose.pose.position.z

		T_odom = transformations.quaternion_matrix([self.last_odom_pose.pose.pose.orientation.x,self.last_odom_pose.pose.pose.orientation.y,self.last_odom_pose.pose.pose.orientation.z,self.last_odom_pose.pose.pose.orientation.w])
		T_odom[0, 3] = self.last_odom_pose.pose.pose.position.x
		T_odom[1, 3] = self.last_odom_pose.pose.pose.position.y
		T_odom[2, 3] = self.last_odom_pose.pose.pose.position.z
		T = np.dot(T_est, np.linalg.inv(T_odom))
		q = transformations.quaternion_from_matrix(T) #[:3, :3])

		transform.translation.x = T[0, 3] 
		transform.translation.y = T[1, 3] 
		transform.translation.z = T[2, 3] 
		transform.rotation.x = q[0]
		transform.rotation.y = q[1]
		transform.rotation.z = q[2]
		transform.rotation.w = q[3]

		# Insert new Transform into a TransformStamped object and add to the
		# tf tree
		new_tfstamped = TransformStamped()
		new_tfstamped.child_frame_id = "/odom"
		new_tfstamped.header.frame_id = "/map"
		new_tfstamped.header.stamp = currentTime
		new_tfstamped.transform = transform

		# Add the transform to the list of all transforms
		self.tf_message = tfMessage(transforms=[new_tfstamped])

	def predict_from_odometry(self, odom, lock):
		"""
		Adds the estimated motion from odometry readings to each of the
		particles in particlecloud.

		:Args:
			| odom (nav_msgs.msg.Odometry): Recent Odometry data
		"""
		with lock:

			t = time.time()
			x = odom.pose.pose.position.x
			y = odom.pose.pose.position.y
			new_heading = getHeading(odom.pose.pose.orientation)

			# On our first run, the incoming translations may not be equal to 
			# zero, so set them appropriately
			if not self.odom_initialised:
				self.prev_odom_x = x
				self.prev_odom_y = y
				self.prev_odom_heading = new_heading
				self.odom_initialised = True

			# Find difference between current and previous translations
			dif_x = x - self.prev_odom_x
			dif_y = y - self.prev_odom_y
			dif_heading = new_heading - self.prev_odom_heading
			if dif_heading >  math.pi:
				dif_heading = (math.pi * 2) - dif_heading
			if dif_heading <  -math.pi:
				dif_heading = (math.pi * 2) + dif_heading

			# Update previous pure odometry location (i.e. excluding noise) 
			# with the new translation
			self.prev_odom_x = x
			self.prev_odom_y = y
			self.prev_odom_heading = new_heading
			self.last_odom_pose = odom

			# Find robot's linear forward/backward motion, given the dif_x and 
			# dif_y changes and its orientation
			distance_travelled = math.sqrt(dif_x*dif_x + dif_y*dif_y)
			direction_travelled = math.atan2(dif_y, dif_x)
			temp = abs(new_heading - direction_travelled)

			if temp < -PI_OVER_TWO or temp > PI_OVER_TWO:
				# We are going backwards
				distance_travelled = distance_travelled * -1

			# Update each particle with change in position (plus noise)
			for p in self.particlecloud.poses:

				rnd = random.normalvariate(0, 1)

				# Rotate particle according to odometry rotation, plus  noise
				p.orientation = (rotateQuaternion(p.orientation,dif_heading + rnd * dif_heading * self.ODOM_ROTATION_NOISE))

				# Get particle's new orientation
				theta = getHeading(p.orientation)

				# Find translation in the direction of particle's orientation
				travel_x = distance_travelled * math.cos(theta)
				travel_y = distance_travelled * math.sin(theta)
				p.position.x = (p.position.x + travel_x + (rnd * travel_x * self.ODOM_TRANSLATION_NOISE))
				p.position.y = (p.position.y + travel_y + (rnd * travel_y * self.ODOM_DRIFT_NOISE))

		return time.time() - t

	def set_initial_pose(self, pose):
		""" Initialise filter with start pose """
		self.estimatedpose.pose = pose.pose
		# Estimated pose has been set, so we should now reinitialise the 
		# particle cloud around it
		rospy.loginfo("Got pose. Calling initialise_particle_cloud().")
		self.particlecloud = self.initialise_particle_cloud(self.estimatedpose)
		self.particlecloud.header.frame_id = "/map"

	def set_map(self, occupancy_map):
		""" Set the map for localisation """
		self.occupancy_map = occupancy_map
		self.sensor_model.set_map(occupancy_map)

		#Define Free Occupancy Points
		sizeRealMap = len(self.occupancy_map.data)
		sizeSupposedMap = self.occupancy_map.info.width * self.occupancy_map.info.height

		rospy.loginfo("Real Map = %s"%sizeRealMap)
		rospy.loginfo("Suppose Map = %s"%sizeSupposedMap)

		i = 0
		occupancyData = self.occupancy_map.data

		for h in range(0, self.occupancy_map.info.height):
			for w in range(0, self.occupancy_map.info.width):			
				if (occupancyData[i] >= 0.0) :
					point = Point()
					point.x = w
					point.y = h
					point.z = 0
					self.listFreePoints.append(point)
				i += 1
		rospy.loginfo("Len listFreePoints= %s"%len(self.listFreePoints))
		self.cloud.mapInfo = []
		self.cloud.mapInfo.append((self.floorName, self.listFreePoints, self.occupancy_map.info.resolution))

		# Map has changed, so we should reinitialise the particle cloud
		rospy.loginfo("Particle filter got map. (Re)initialising.")
		self.particlecloud = self.initialise_particle_cloud(self.estimatedpose)
		self.particlecloud.header.frame_id = "/map"