Пример #1
0
import pickle
from simulation import plotMulti, plotY1Y2, holdoutRealWorkers

######################################
###########simulated dataset##########
######################################
logscale = False
dirty = 0.2
n_items = 1000
n_rep = 10

print 'Sensitivity of Total Error Estimation'
#estimators_sim = [vNominal, chao92, lambda x:sChao92(x,shift=1),lambda x:vRemainSwitch2(x)]
#legend_sim = ['VOTING','Chao92','V-CHAO','SWITCH']
#gt_list_sim = [lambda x:gt,lambda x:gt,lambda x:gt,lambda x:gt]
estimators_sim = [lambda x: vNominal(x), chao92, lambda x: vRemainSwitch2(x)]
gt_list_sim = [lambda x: gt, lambda x: gt, lambda x: gt]
legend_sim = ['VOTING', 'Chao92', 'SWITCH']
legend_gt = ["Ground Truth"]
yaxis = 'SRMSE'  #'Relative Error %'

rel_err = True
err_skew = False
'''
title = 'Tradeoff: False Positives'
recall = 0.1
n_worker=50
font = 20
Xs = []
Ys = []
GTs = []
Пример #2
0
from estimator import chao92, sChao92, nominal, vNominal, sNominal, remain_switch, gt_switch, extrapolation, extrapolation2, extrapolation3, vRemainSwitch, vRemainSwitch2, extrapolateFromSample, sampleCoverage, minTasks, minTasksToCleanAll
from datagen import generateDist, generateDataset, generateWeightedDataset, shuffleList
from dataload import simulatedData, loadCrowdFlowerData, loadRestaurant2, loadProduct, loadRestaurantExtSample, loadAddress
import pickle
from simulation import plotMulti, plotY1Y2, holdoutRealWorkers

##############################################
########### real-world datasets ##############
##############################################

#====total error====
estimators = [
    lambda x: extrapolateFromSample(x, slist, 0.05) + obvious_err,
    lambda x: vNominal(x) + obvious_err,
    lambda x: sChao92(x, shift=1) + obvious_err,
    lambda x: vRemainSwitch2(x) + obvious_err
]
#estimators = [lambda x: vNominal(x) + obvious_err, lambda x: chao92(x)+obvious_err]
legend = ["EXTRAPOL", "VOTING", "V-CHAO", "SWITCH"]
gt_list = [
    lambda x: gt + obvious_err, lambda x: gt + obvious_err,
    lambda x: gt + obvious_err, lambda x: gt + obvious_err
]
legend_gt = ["Ground Truth"]

#====switch====
estimators2 = [lambda x: remain_switch(x) - sNominal(x)]
estimators2a = [
    lambda x: remain_switch(x, neg_switch=False) - sNominal(x,
                                                            neg_switch=False)
]