Пример #1
0
    def __createDomain(self):
        """
        Creates and returns an escript domain that spans the entire area of
        available data plus a padding zone. This method is called only once
        the first time `getDomain()` is invoked.

        :return: The escript domain
        :rtype: `esys.escript.Domain`
        """
        X0, NX, DX = self.__getTotalExtentsWithPadding()

        # number of domain elements
        NE = NX + [self._v_num_cells]

        # origin of domain
        origin = X0 + [-self._v_depth * self.__v_scale]

        if self.getReferenceSystem().isCartesian():
            # rounding will give us about meter-accuracy with UTM coordinates
            self._dom_origin = [np.floor(oi) for oi in origin]
        else:
            # this should give us about meter-accuracy with lat/lon coords
            self._dom_origin = [1e-5 * np.floor(oi * 1e5) for oi in origin]

        # cell size / point spacing
        spacing = DX + [
            self.__v_scale * np.floor(
                (self._v_depth + self._v_air_layer) / self._v_num_cells)
        ]
        #self._spacing = [float(np.floor(si)) for si in spacing]
        self._spacing = spacing

        lo = [(self._dom_origin[i],
               self._dom_origin[i] + NE[i] * self._spacing[i])
              for i in range(self.__dim)]

        if self.__dim == 3:
            dom = Brick(*NE, l0=lo[0], l1=lo[1], l2=lo[2])
        else:
            dom = Rectangle(*NE, l0=lo[0], l1=lo[1])

        # ripley may internally adjust NE and length, so recompute
        self._dom_len = [
            esu.sup(dom.getX()[i]) - esu.inf(dom.getX()[i])
            for i in range(self.__dim)
        ]
        self._dom_NE = [
            int(self._dom_len[i] / self._spacing[i]) for i in range(self.__dim)
        ]

        self.logger.debug("Domain size: " + str(self._dom_NE))
        self.logger.debug("     length: " + str(self._dom_len))
        self.logger.debug("     origin: " + str(self._dom_origin))
        return dom
Пример #2
0
    def __createDomain(self):
        """
        Creates and returns an escript domain that spans the entire area of
        available data plus a padding zone. This method is called only once
        the first time `getDomain()` is invoked.

        :return: The escript domain
        :rtype: `esys.escript.Domain`
        """
        X0, NX, DX = self.__getTotalExtentsWithPadding()

        # number of domain elements
        NE = NX + [self._v_num_cells]

        # origin of domain
        origin = X0 + [-self._v_depth*self.__v_scale]

        if self.getReferenceSystem().isCartesian():
            # rounding will give us about meter-accuracy with UTM coordinates
            self._dom_origin = [np.floor(oi) for oi in origin]
        else:
            # this should give us about meter-accuracy with lat/lon coords
            self._dom_origin = [1e-5*np.floor(oi*1e5) for oi in origin]

        # cell size / point spacing
        spacing = DX + [self.__v_scale*np.floor((self._v_depth+self._v_air_layer)/self._v_num_cells)]
        #self._spacing = [float(np.floor(si)) for si in spacing]
        self._spacing = spacing

        lo=[(self._dom_origin[i], self._dom_origin[i]+NE[i]*self._spacing[i]) for i in range(self.__dim)]

        if self.__dim==3:
            dom=Brick(*NE, l0=lo[0], l1=lo[1], l2=lo[2])
        else:
            dom=Rectangle(*NE, l0=lo[0], l1=lo[1])

        # ripley may internally adjust NE and length, so recompute
        self._dom_len=[sup(dom.getX()[i])-inf(dom.getX()[i]) for i in range(self.__dim)]
        self._dom_NE=[int(self._dom_len[i]/self._spacing[i]) for i in range(self.__dim)]

        self.logger.debug("Domain size: "+str(self._dom_NE))
        self.logger.debug("     length: "+str(self._dom_len))
        self.logger.debug("     origin: "+str(self._dom_origin))
        return dom
Пример #3
0
class TestGravityApp(unittest.TestCase):

    xdim = 1000.
    ydim = 1000.
    zdim = 1000.
    NEX = 100
    NEZ = 100
    TESTTOL = 1e-3

    def setUp(self):
        self.domain = Brick(self.NEX,
                            self.NEX,
                            self.NEZ,
                            l0=self.xdim,
                            l1=self.ydim,
                            l2=self.zdim)

    def tearDown(self):
        del self.domain

    def test_pde_answer(self):
        model = GravityModel(self.domain, fixBase=True)
        x = self.domain.getX()
        xmin = inf(x[0])
        xmax = sup(x[0])
        ymin = inf(x[1])
        ymax = sup(x[1])
        zmin = inf(x[2])
        zmax = sup(x[2])
        xp = 2. * np.pi / (xmax - xmin)
        yp = 2. * np.pi / (ymax - ymin)
        zp = 2. * np.pi / (zmax - zmin)
        Dens = (xp**2 + yp**2 + zp**2) * cos(xp * x[0]) * cos(yp * x[1]) * sin(
            zp * x[2]) / (4.0 * np.pi * U.Gravitational_Constant)
        model.setDensity(Dens)
        outdens = model.getDensity()
        densdiff = abs(Dens - outdens)
        self.assertLessEqual(sup(densdiff), self.TESTTOL)
        actualanswer = -cos(xp * x[0]) * cos(yp * x[1]) * sin(zp * x[2])
        abserror = abs(actualanswer - model.getGravityPotential())
        biggesterror = sup(abserror)
        self.assertLessEqual(biggesterror, self.TESTTOL)
        gz = model.getzGravity()
        actualgz = -zp * cos(xp * x[0]) * cos(yp * x[1]) * cos(zp * x[2])
        errorgz = abs(gz - actualgz)
        self.assertLessEqual(sup(errorgz), self.TESTTOL * 100.)
Пример #4
0
class TestMagneticApp3D(unittest.TestCase):

    xdim = 1000.
    ydim = 1000.
    zdim = 1000.
    NEX = 100
    NEZ = 100
    TESTTOL = 1e-3

    def setUp(self):
        self.domain = Brick(self.NEX,
                            self.NEX,
                            self.NEZ,
                            l0=self.xdim,
                            l1=self.ydim,
                            l2=self.zdim)

    def tearDown(self):
        del self.domain

    def test_pde_answer(self):
        model = MagneticModel3D(self.domain, fixVert=True)
        x = self.domain.getX()
        xmin = inf(x[0])
        xmax = sup(x[0])
        ymin = inf(x[1])
        ymax = sup(x[1])
        zmin = inf(x[2])
        zmax = sup(x[2])
        xp = 2. * np.pi / (xmax - xmin)
        yp = 2. * np.pi / (ymax - ymin)
        zp = 2. * np.pi / (zmax - zmin)
        Bh = [1., 0., 0.]
        k = ((xp**2 + yp**2 + zp**2) / xp) * cos(xp * x[0]) * sin(
            yp * x[1]) * cos(zp * x[2])
        model.setSusceptibility(k)
        outk = model.getSusceptibility()
        kdiff = abs(k - outk)
        self.assertLessEqual(sup(kdiff), self.TESTTOL)
        model.setBackgroundMagneticField(Bh)
        actualanswer = sin(xp * x[0]) * sin(yp * x[1]) * cos(zp * x[2])
        abserror = abs(actualanswer - model.getAnomalyPotential())
        biggesterror = sup(abserror)
        self.assertLessEqual(biggesterror, self.TESTTOL)
Пример #5
0
    try:
        from esys.ripley import Brick
        HAVE_RIPLEY = True
    except ImportError:
        HAVE_RIPLEY = False
        print("Ripley module not available")

    if HAVE_RIPLEY:
        from esys.escript import *
        from esys.escript.linearPDEs import Poisson
        from esys.weipa import saveSilo, saveVoxet

        import tempfile

        dom = Brick(l0=1., l1=1., n0=9, n1=9, n2=9)
        x = dom.getX()
        gammaD = whereZero(x[0]) + whereZero(x[1])
        pde = Poisson(dom)
        q = gammaD
        pde.setValue(f=1, q=q)
        u = pde.getSolution()
        u = interpolate(u + dom.getX()[2], ReducedFunction(dom))
        print(u)
        handle, filename = tempfile.mkstemp(suffix='.vo', prefix='poisson')
        saveVoxet(filename, u=u)
        print("-------")
        dom = Brick(l0=1., l1=1., l2=4., n0=18, n1=18, n2=36)
        v = readVoxet(dom, filename, 'u', fillValue=0.5)
        print(v)
        os.remove(filename)
        #saveSilo('/tmp/poisson', v=v)
Пример #6
0
        elif (NY+1)%(d1*f) == 0:
            d1 = d1 * f
            d2 = d2 / f
    else:
        if (NY+1)%(d1*f) == 0:
            d1 = d1 * f
            d2 = d2 / f
        elif (NX+1)%(d0*f) == 0:
            d0 = d0 * f
            d2 = d2 / f

# create domain
print("Domain subdivisions: %d x %d x %d"%(d0,d1,d2))
dom = Brick(NX, NY, n_cells_v, l0, l1, l2, d0, d1, d2)

dom_len = [sup(dom.getX()[i])-inf(dom.getX()[i]) for i in range(dom.getDim())]

# report domain setup
print("Domain size: "+str([NX, NY, n_cells_v]))
print("     length: "+str(dom_len))
print("     origin: "+str(dom_origin))

DIM = dom.getDim() # = 3

datacoords = ReducedFunction(dom).getX()

# create the output directory if not existing already
try:
    os.mkdir(OUTPUTDIR)
except:
    pass
Пример #7
0
if __name__ == "__main__":
    try:
        from esys.ripley import Brick
        HAVE_RIPLEY = True
    except ImportError:
        HAVE_RIPLEY = False
        print("Ripley module not available")

    if HAVE_RIPLEY:
        from esys.escript import *
        from esys.escript.linearPDEs import Poisson
        from esys.weipa import saveSilo, saveVoxet

        dom = Brick(l0=1.,l1=1.,n0=9, n1=9, n2=9)
        x = dom.getX()
        gammaD = whereZero(x[0])+whereZero(x[1])
        pde = Poisson(dom)
        q = gammaD
        pde.setValue(f=1, q=q)
        u = pde.getSolution()
        u=interpolate(u+dom.getX()[2], ReducedFunction(dom))
        print(u)
        saveVoxet('/tmp/poisson.vo', u=u)
        print("-------")
        dom = Brick(l0=1.,l1=1.,l2=4.,n0=18, n1=18, n2=36)
        v=readVoxet(dom, '/tmp/poisson.vo', 'u', fillValue=0.5)
        print(v)
        #saveSilo('/tmp/poisson', v=v)

Пример #8
0
class TestDCResistivityApp(unittest.TestCase):

    dx = 10  # grid line spacing in [m]
    NEx = 50  # number of nodes in the x direction
    NEy = 50  # number of nodes in the y direction
    NEz = 50  # number of nodes in the z direction
    H0 = 600  # height [m] of transect above bottom of domain (will be locked to grid)
    sig_p = 1.  # primary conductivity
    sig_2 = 100.  # conductivity in ball    xdim = 1000.
    TESTTOL = 1e-3
    POSx = 100
    POSy = 70
    NEGx = 100
    NEGy = 110
    POS_node = (POSx * dx, POSy * dx, NEz * dx)
    NEG_node = (NEGx * dx, NEGy * dx, NEz * dx)
    Z0 = 100  # vertical position of circle below transect [m]
    Lx = dx * NEx
    Ly = dx * NEy
    Lz = dx * NEz
    c = [Lx / 2., Ly / 2., H0 - Z0]  # circle center
    R = 50.  # radius

    def setUp(self):
        self.domain = Brick(n0=self.NEx,
                            n1=self.NEy,
                            n2=self.NEz,
                            l0=self.Lx,
                            l1=self.Ly,
                            l2=self.Lz,
                            diracPoints=[self.POS_node, self.NEG_node],
                            diracTags=['e0', 'e1'])

    def tearDown(self):
        del self.domain

    def test_pde_Primary(self):

        model1 = DCResistivityModel(self.domain,
                                    sigma0=self.sig_p,
                                    useFastSolver=True)
        model1.setPrimaryPotentialForHalfSpace(
            sources=[self.POS_node, self.NEG_node], charges=[1.0, -1.0])

        analyticprimary = model1.setPrimaryPotentialForHalfSpace(
            sources=[self.POS_node, self.NEG_node], charges=[1.0, -1.0])
        primaryans1 = model1.getPrimaryPotential()
        model2 = DCResistivityModel(self.domain,
                                    sigma0=self.sig_p,
                                    useFastSolver=True)
        src = Scalar(0., DiracDeltaFunctions(self.domain))
        src.setTaggedValue('e0', 1.0)
        src.setTaggedValue('e1', -1.0)
        model2.setPrimaryPotential(source=src)
        primaryans2 = model2.getPrimaryPotential()
        abserror = abs(primaryans1 - primaryans2)
        self.assertLessEqual(sup(abserror), self.TESTTOL * 10., "primaries")
        sigma = Scalar(self.sig_p, ContinuousFunction(self.domain))
        x = self.domain.getX()
        d = length(x - self.c)
        sphereCond = sigma + (self.sig_2 - self.sig_p) * whereNegative(
            d - self.R)  # 0 for d>R and 1 for d<R
        model1.setConductivity(sphereCond)
        model2.setConductivity(sphereCond)
        us1 = model1.getSecondaryPotential()
        us2 = model1.getSecondaryPotential()
        abserror = abs(us1 - us2)
        self.assertLessEqual(sup(abserror), self.TESTTOL * 1., "secondaries")
        ut1 = model1.getPotential()
        ut2 = model2.getPotential()
        model3 = DCResistivityModelNoPrimary(self.domain,
                                             source=src,
                                             sigma=sphereCond,
                                             useFastSolver=True)
        ut3 = model3.getPotential()
        abserror = abs(ut1 - ut2)
        self.assertLessEqual(sup(abserror), self.TESTTOL * 10.,
                             "total with primaries")
        abserror = abs(ut1 - ut3)
        self.assertLessEqual(sup(abserror), self.TESTTOL * 10.,
                             "total with analytic primary")
        abserror = abs(ut2 - ut3)
        self.assertLessEqual(sup(abserror), self.TESTTOL * 10.,
                             "total with FE primary")