""" Project Euler Problem 41 ======================== We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? """ import euler_utils as utils primes = utils.primes_till((10**7)) ndigit = [str(i) for i in range(1,10)] #print ndigit for i in range(len(primes)-1, 1, -1): number_str = str(primes[i]) length = len(number_str) if len(set(number_str).intersection(set(ndigit[0:length]))) == length: print primes[i] break
""" Project Euler Problem 35 ======================== The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime. There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97. How many circular primes are there below one million? """ import euler_utils as utils primes = set(utils.primes_till(1000000)) count = 0 for num in primes: num_str = str(num) if all([x in primes for x in [int(num_str[i:]+num_str[:i]) for i in range(len(num_str))]]): count += 1 print count
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a =/= b, then a and b are an amicable pair and each of a and b are called amicable numbers. For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220. Evaluate the sum of all the amicable numbers under 10000. """ import euler_utils as utils no_op_set = set(utils.primes_till(10000)) dn_map = {} amicable_pairs = [] dn = lambda x:sum(utils.divisors_of(x)) for num in range(4,10001): if num not in no_op_set and num not in dn_map: dsum = dn(num) dn_map[num] = dsum if dsum < 10000 and dsum > num: dsum_sum = dn(dsum) if dsum_sum == num: amicable_pairs.append((num, dsum)) dn_map[dsum] = dsum_sum