# ### Sampling date

# %%
sampling_date = dt.datetime(year=2019, month=12, day=31)

# %%
sampling_date = dt.datetime(year=2021, month=12, day=31)

# %% [markdown]
# ### Data

# %%
option = "logvar_capm_resid"  # "spy_capm_decomp"

# %%
data = DataMap("../data")
df_idio_var = data.load_historic(sampling_date=sampling_date,
                                 column="var_idio")
df_logvar_resid = data.load_historic(sampling_date=sampling_date,
                                     column="logvar_capm_resid")
df_var = data.load_historic(sampling_date=sampling_date, column="var")
df_spy_var = data.load_spy_data(series="var").loc[df_idio_var.index]
df_info = data.load_asset_estimates(
    sampling_date=sampling_date,
    columns=["ticker", "comnam", "last_size", "mean_size"])

# %% [markdown]
# ### Tickers

# %%
ticker_list = (data.load_historic(
Пример #2
0
# import pytest

import numpy as np
import pandas as pd
from pandas.testing import assert_frame_equal

from euraculus.data import DataMap

datamap = DataMap(datapath="/home/rubelrennfix/projects/euraculus/data")


class TestPrepareLogVariances:
    """This class serves to test various cases of preparing log variance data."""

    def test_full_column(self):
        df_var = pd.DataFrame(data=[[1], [1], [1]])
        df_noisevar = pd.DataFrame(data=[[2], [2], [2]])
        output = datamap.prepare_log_variances(df_var=df_var, df_noisevar=df_noisevar)
        expected = np.log(pd.DataFrame(data=[[1], [1], [1]]))
        assert_frame_equal(output, expected)

    def test_empty_column(self):
        _ = np.nan
        df_var = pd.DataFrame(data=[[_], [_], [_]])
        df_noisevar = pd.DataFrame(data=[[_], [_], [_]])
        output = datamap.prepare_log_variances(df_var=df_var, df_noisevar=df_noisevar)
        expected = np.log(pd.DataFrame(data=[[_], [_], [_]]))
        assert_frame_equal(output, expected)

    def test_zero_column(self):
        df_var = pd.DataFrame(data=[[0], [0], [0]])