Пример #1
0
def eval_ap(iou, iou_idx, cls, gt, predition):
    ap = evaluate.ap(predition, iou[0], gt)
    sys.stdout.flush()
    return cls, iou_idx, ap
Пример #2
0
for cls in prediction_by_cls:
    all_prediction += cls

print("NMS performed.")

# calculate
ious = np.arange(0.1, 1.0, 0.1)
aps = np.zeros((len(ious), label_count))
ars = np.zeros((len(ious), label_count))
f1s = np.zeros((len(ious), ))

miou = evaluate.miou_per_v(all_prediction, all_groundtruth)

for i, iou in enumerate(ious):
    for cls in range(label_count):
        ap, ar = evaluate.ap(prediction_by_cls[cls], iou,
                             groundtruth_by_cls[cls])
        aps[i][cls] = ap
        ars[i][cls] = ar
    f1 = evaluate.f1(all_prediction, iou, all_groundtruth)
    f1s[i] = f1

map_ = np.mean(aps, axis=1)
mar = np.mean(ars, axis=1)

print("Criteria solved.")

# print
title = "C3D Detection Performance"
datas = [["IoU threshold"], ["mean AP"], ["mean AR"], ["F1 criterion"]]
for i, iou in enumerate(ious):
    datas[0].append("{:.2f}".format(iou))