def test_random_events_with_daily_logging_volume_and_maximum_days():
    e = RandomEvent(params={
        "index": "logs-<yyyy><mm><dd>",
        "starting_point": "2019-01-05 15:00:00",
        # 1kB of data per client before we will rollover to the next day
        "daily_logging_volume": "8192",
        "number_of_days": 2,
        "client_count": 8,
        # we need a constant point in time to ensure a stable event size
        "__utc_now": lambda: datetime(year=2019, month=6, day=17)
    },
        agent=StaticAgent,
        client_ip=StaticClientIp,
        referrer=StaticReferrer,
        request=StaticRequest)

    assert e.percent_completed == 0.0

    # 5 events fit into one kilobyte
    for i in range(5):
        doc, index, _ = e.generate_event()
        assert index == "logs-20190105"

    assert e.percent_completed == 0.5

    for i in range(5):
        doc, index, _ = e.generate_event()
        assert index == "logs-20190106"
    # no more events allowed on the next day
    with pytest.raises(StopIteration):
        doc, index, _ = e.generate_event()

    assert e.percent_completed == 1.0
def test_random_events_with_daily_logging_volume():
    e = RandomEvent(params={
        "index": "logs-<yyyy><mm><dd>",
        "starting_point": "2019-01-05 15:00:00",
        # 1kB of data per client before we will rollover to the next day
        "daily_logging_volume": "8kB",
        "client_count": 8,
        # we need a constant point in time to ensure a stable event size
        "__utc_now": lambda: datetime(year=2019, month=6, day=17)
    },
        agent=StaticAgent,
        client_ip=StaticClientIp,
        referrer=StaticReferrer,
        request=StaticRequest)

    assert e.percent_completed is None

    # 5 events fit into one kilobyte
    for i in range(5):
        doc, index, _ = e.generate_event()
        assert index == "logs-20190105"
    for i in range(5):
        doc, index, _ = e.generate_event()
        assert index == "logs-20190106"
    for i in range(5):
        doc, index, _ = e.generate_event()
        assert index == "logs-20190107"

    assert e.percent_completed is None
    def __init__(self, indices, params):
        self._indices = indices
        self._params = params
        self._randomevent = RandomEvent(params)

        self._bulk_size = 1000
        if 'bulk-size' in params.keys():
            self._bulk_size = params['bulk-size']

        self._default_index = False
        if 'index' not in params.keys():
            if len(indices) > 1:
                logger.debug(
                    "[bulk] More than one index specified in track configuration. Will use the first one ({})"
                    .format(indices[0].name))
            else:
                logger.debug(
                    "[bulk] Using index specified in track configuration ({})".
                    format(indices[0].name))

            self._params['index'] = indices[0].name
            self._default_index = True

        else:
            logger.debug(
                "[bulk] Index pattern specified in parameters ({}) will be used"
                .format(params['index']))

        if 'type' not in params.keys():
            self._params['type'] = indices[0].types[0].name
    def __init__(self, track, params, **kwargs):
        self.infinite = False
        self.orig_args = [track, params, kwargs]
        self._indices = track.indices
        self._params = params
        # we could also do `kwargs.get("random_event", RandomEvent(params))` but that would call the constructor eagerly
        # which we want to avoid because this can cause significant overhead.
        if "random_event" in kwargs:
            self._randomevent = kwargs["random_event"]
        else:
            self._randomevent = RandomEvent(params)

        self._bulk_size = params["bulk-size"]
        self.seq_id = 0

        self._id_type = params.get("id_type", "auto")
        if self._id_type not in [
                "auto", "seq", "uuid", "epoch_uuid", "epoch_md5", "md5",
                "sha1", "sha256", "sha384", "sha512"
        ]:
            raise AssertionError(
                "The value [{}] is invalid for the parameter [id_type]".format(
                    self._id_type))

        if self._id_type in ["epoch_uuid", "epoch_md5"]:
            self._id_delay_probability = float(
                params.get("id_delay_probability", 0.0))
            self._id_delay_secs = int(params.get("id_delay_secs", 0))

        if self._id_type == "seq":
            self._id_seq_probability = float(
                params.get("id_seq_probability", 0.0))
            self._low_id_bias = str(params.get('id_seq_low_id_bias',
                                               False)).lower() == "true"
            if self._low_id_bias:
                logger.info("Will use low id bias for updates")
            else:
                logger.info("Will use uniform distribution for updates")

        self._default_index = False
        if "index" not in params.keys():
            index_name = self._indices[0].name
            if len(self._indices) > 1:
                logger.debug(
                    "[bulk] More than one index specified in track configuration. Will use the first one ({})"
                    .format(index_name))
            else:
                logger.debug(
                    "[bulk] Using index specified in track configuration ({})".
                    format(index_name))

            self._params["index"] = index_name
            self._default_index = True
        else:
            logger.debug(
                "[bulk] Index pattern specified in parameters ({}) will be used"
                .format(params["index"]))
    def __init__(self, track, params, **kwargs):
        self._indices = track.indices
        self._params = params
        self._params = params
        self._randomevent = RandomEvent(params)

        self._bulk_size = 1000
        if 'bulk-size' in params.keys():
            self._bulk_size = params['bulk-size']

        self._id_type = "auto"
        if 'id_type' in params.keys():
            if params['id_type'] in [
                    'auto', 'uuid', 'epoch_uuid', 'sha1', 'sha256', 'sha384',
                    'sha512'
            ]:
                self._id_type = params['id_type']
            else:
                logger.warning(
                    "[bulk] Invalid id_type ({}) specified. Will use default.".
                    format(params['id_type']))

        if self._id_type == "epoch_uuid":
            if 'id_delay_probability' in params.keys():
                self._id_delay_probability = float(
                    params['id_delay_probability'])
            else:
                self._id_delay_probability = 0.0

            if 'id_delay_secs' in params.keys():
                self._id_delay_secs = int(params['id_delay_secs'])
            else:
                self._id_delay_secs = 0

        self._default_index = False
        if 'index' not in params.keys():
            if len(self._indices) > 1:
                logger.debug(
                    "[bulk] More than one index specified in track configuration. Will use the first one ({})"
                    .format(self._indices[0].name))
            else:
                logger.debug(
                    "[bulk] Using index specified in track configuration ({})".
                    format(self._indices[0].name))

            self._params['index'] = self._indices[0].name
            self._default_index = True

        else:
            logger.debug(
                "[bulk] Index pattern specified in parameters ({}) will be used"
                .format(params['index']))
def test_random_event_no_event_size_by_default():
    e = RandomEvent(params={
        "index": "logs",
        "starting_point": "2019-01-05 15:00:00",
    },
        agent=StaticAgent,
        client_ip=StaticClientIp,
        referrer=StaticReferrer,
        request=StaticRequest)

    raw_doc, index, doc_type = e.generate_event()

    doc = json.loads(raw_doc)
    assert "_raw_event_size" not in doc
    assert index == "logs"
    assert doc_type == "doc"
def test_random_event_with_event_size():
    e = RandomEvent(params={
        "index": "logs",
        "starting_point": "2019-01-05 15:00:00",
        "record_raw_event_size": True,
        # we need a constant point in time to ensure a stable event size
        "__utc_now": lambda: datetime(year=2019, month=6, day=17)
    },
        agent=StaticAgent,
        client_ip=StaticClientIp,
        referrer=StaticReferrer,
        request=StaticRequest)

    raw_doc, index, doc_type = e.generate_event()

    doc = json.loads(raw_doc)
    assert doc["_raw_event_size"] == 236
    assert index == "logs"
    assert doc_type == "doc"
Пример #8
0
class ElasticlogsBulkSource:
    """
    Generates a bulk indexing request for elasticlogs data.

    It expects the parameter hash to contain the following keys:
        "bulk-size"                -    Integer indicating events generated per bulk request.
        "index"                    -    Name of index, index prefix or alias documents should be indexed into. The index name
                                        can be made to generate time based indices by including date formatting in the name.
                                        'test-<yyyy>-<mm>-<dd>-<hh>' will generate an hourly index. (mandatory)
        "starting_point"           -    String specifying the starting point for event time generation. It supports absolute or
                                        relative values as follows:
                                            'now'                 - Always evaluated to the current timestamp at time of generation
                                            'now-1h'              - Offset to the current timestamp. Consists of a number and
                                                                    either m (minutes), h (hours) or d (days).
                                            '2017-02-20 20:12:32' - Exact timestamp.
                                            '2017-02-20'          - Date. Time will be assumed to be 00:00:00.
                                        If a relative starting point (based on now) is provided, this will be used for generation.
                                        In the case an exact timestamp is provided as starting point, the difference to now will
                                        be calculated when the generation starts and this will be used as an offset for all events.
                                        Defaults to 'now'.
        "acceleration_factor"  -    This factor allows the time progression in the timestamp calculation to be altered.
                                    A value larger than 1 will accelerate generation and a value lower than 1 will slow
                                    it down. If a task is set up to run indexing for one hour with a fixed starting
                                    point of '2016-12-20 20:12:32' and an acceleration factor of 2.0, events will be
                                    generated in timestamp sequence covering a 2-hour window, '2017-02-20 20:12:32'
                                    to '2017-02-20 22:12:32' (approximately).
        "id_type"                  -    Type of document id to use for generated documents. Defaults to `auto`.
                                            auto         - Do not explicitly set id and let Elasticsearch assign automatically.
                                            seq          - Assign sequentialy incrementing integer ids to each document.
        "id_seq_probability"       -    If set, the probability an existing id will be used to simulate an update.
                                            Applied only when `id_type` is seq.
                                            Defaults to 0.0 which brings no updates. Must be in range [0.0, 1.0].
        "id_seq_low_id_bias"       -    If set, favor low ids with a very high bias. Must be True/False. Default is False.
    """
    def __init__(self, track, params, **kwargs):
        self.infinite = False
        self.orig_args = [track, params, kwargs]
        self._indices = track.indices
        self._params = params
        # we could also do `kwargs.get("random_event", RandomEvent(params))` but that would call the constructor eagerly
        # which we want to avoid because this can cause significant overhead.
        if "random_event" in kwargs:
            self._randomevent = kwargs["random_event"]
        else:
            self._randomevent = RandomEvent(params)

        self._bulk_size = params["bulk-size"]
        self.seq_id = 0

        self._id_type = params.get("id_type", "auto")
        if self._id_type not in ["auto", "seq"]:
            raise AssertionError("The value [{}] is invalid for the parameter [id_type]".format(self._id_type))

        if self._id_type == "seq":
            self._id_seq_probability = float(params.get("id_seq_probability", 0.0))
            self._low_id_bias = str(params.get('id_seq_low_id_bias', False)).lower() == "true"
            if self._low_id_bias:
                logger.info("Will use low id bias for updates")
            else:
                logger.info("Will use uniform distribution for updates")

        self._default_index = False
        if "index" not in params.keys():
            index_name = self._indices[0].name
            if len(self._indices) > 1:
                logger.debug("[bulk] More than one index specified in track configuration. Will use the first one ({})".format(index_name))
            else:
                logger.debug("[bulk] Using index specified in track configuration ({})".format(index_name))

            self._params["index"] = index_name
            self._default_index = True
        else:
            logger.debug("[bulk] Index pattern specified in parameters ({}) will be used".format(params["index"]))

    def partition(self, partition_index, total_partitions):
        if self._params.get("id_type") != "seq":
            seed = partition_index * self._params["seed"] if "seed" in self._params else None
            random.seed(seed)
        new_params = copy.deepcopy(self.orig_args[1])
        new_params["client_id"] = partition_index
        new_params["client_count"] = total_partitions
        return ElasticlogsBulkSource(self.orig_args[0], new_params, **self.orig_args[2])

    @property
    def percent_completed(self):
        # progress is determined either by:
        #
        # * the `time-period` or `iteration` property specified on the corresponding task
        # * `#params()` raising `StopIteration` when `RandomEvent` is exhausted
        return self._randomevent.percent_completed

    def params(self):
        # Build bulk array
        bulk_array = []
        self._randomevent.start_bulk(self._bulk_size)
        for x in range(0, self._bulk_size):
            try:
                evt, idx, typ = self._randomevent.generate_event()
            except StopIteration:
                if len(bulk_array) > 0:
                    # return any remaining items if there are any (otherwise we'd lose the last bulk request)
                    break
                else:
                    # otherwise stop immediately
                    raise

            if self._id_type == "auto":
                bulk_array.append('{"index": {"_index": "%s"}}' % idx)
            else:
                docid = "%s-%d" % (self.__get_seq_id(), self._params["client_id"])
                bulk_array.append('{"index": {"_index": "%s", "_id": "%s"}}' % (idx, docid))

            bulk_array.append(evt)

        response = {
            "body": "\n".join(bulk_array),
            "action-metadata-present": True,
            # the bulk array contains the action-and-metadata line and the actual document
            "bulk-size": len(bulk_array) // 2,
            "unit": "docs"
        }

        if "pipeline" in self._params.keys():
            response["pipeline"] = self._params["pipeline"]

        return response

    def __get_seq_id(self):
        _id = self.seq_id
        if random.uniform(0, 1) < self._id_seq_probability:
            # conflict
            if self._low_id_bias:
                # update; heavily bias towards older ids
                _p = 10
                _min = 0
                _max = _id
                # _p ~> 0: results closer to min, _p >> 0: results closer to max
                _id = _min + (_max - _min) * pow(random.random(), _p)
            else:
                # update; pick id from pure uniform distribution
                _id = random.randint(0, _id-1 if _id > 0 else 0)
        else:
            # new document
            self.__incr_seq_id()

        return "%012d" % _id

    def __incr_seq_id(self):
        self.seq_id += 1
    def __init__(self, track, params, **kwargs):
        self._indices = track.indices
        self._params = params
        self._params = params
        self._randomevent = RandomEvent(params)

        self._bulk_size = 1000
        if 'bulk-size' in params.keys():
            self._bulk_size = params['bulk-size']

        self._id_type = "auto"
        self.seq_id = 0

        if 'id_type' in params.keys():
            if params['id_type'] in [
                    'auto', "seq", 'uuid', 'epoch_uuid', 'epoch_md5', 'md5',
                    'sha1', 'sha256', 'sha384', 'sha512'
            ]:
                self._id_type = params['id_type']
            else:
                logger.warning(
                    "[bulk] Invalid id_type ({}) specified. Will use default.".
                    format(params['id_type']))

        if self._id_type in ["epoch_uuid", "epoch_md5"]:
            if 'id_delay_probability' in params.keys():
                self._id_delay_probability = float(
                    params['id_delay_probability'])
            else:
                self._id_delay_probability = 0.0

            if 'id_delay_secs' in params.keys():
                self._id_delay_secs = int(params['id_delay_secs'])
            else:
                self._id_delay_secs = 0

        if self._id_type == "seq":
            self.orig_args = [track, params, kwargs]
            self._id_seq_probability = float(
                params['id_seq_probability']
            ) if 'id_seq_probability' in params else 0.0
            self._low_id_bias = str(params.get('id_seq_low_id_bias',
                                               False)).lower() == "true"
            if self._low_id_bias:
                logger.info("Will use low id bias for updates")
            else:
                logger.info("Will use uniform distribution for updates")

        self._default_index = False
        if 'index' not in params.keys():
            if len(self._indices) > 1:
                logger.debug(
                    "[bulk] More than one index specified in track configuration. Will use the first one ({})"
                    .format(self._indices[0].name))
            else:
                logger.debug(
                    "[bulk] Using index specified in track configuration ({})".
                    format(self._indices[0].name))

            self._params['index'] = self._indices[0].name
            self._default_index = True

        else:
            logger.debug(
                "[bulk] Index pattern specified in parameters ({}) will be used"
                .format(params['index']))
class ElasticlogsBulkSource:
    """
    Generates a bulk indexing request for elasticlogs data.

    It expects the parameter hash to contain the following keys:
        "bulk-size"                -    Integer indicating events generated per bulk request. Defaults to 1000.
        "index"                    -    Name of index, index prefix or alias documents should be indexed into. The index name
                                        can be made to generate time based indices by including date formatting in the name.
                                        'test-<yyyy>-<mm>-<dd>-<hh>' will generate an hourly index. (mandatory)
        "starting_point"           -    String specifying the starting point for event time generation. It supports absolute or
                                        relative values as follows:
                                            'now'                 - Always evaluated to the current timestamp at time of generation
                                            'now-1h'              - Offset to the current timestamp. Consists of a number and
                                                                    either m (minutes), h (hours) or d (days).
                                            '2017-02-20 20:12:32' - Exact timestamp.
                                            '2017-02-20'          - Date. Time will be assumed to be 00:00:00.
                                        If a relative starting point (based on now) is provided, this will be used for generation.
                                        In the case an exact timestamp is provided as starting point, the difference to now will
                                        be calculated when the generation starts and this will be used as an offset for all events.
                                        If an interval is provided by also specifying an end_point, the range will be calculated for
                                        each bulk request and each event will be assigned a random timestamp withion this range.
                                        starting point. Defaults to 'now'.
        "end_point"                -    String specifying the end point for event time generation. It supports absolute or
                                        relative values as follows:
                                            'now'                 - Always evaluated to the current timestamp at time of generation
                                            'now-1h'              - Offset to the current timestamp. Consists of a number and
                                                                    either m (minutes), h (hours) or d (days).
                                            '2017-02-20 20:12:32' - Exact timestamp.
                                            '2017-02-20'          - Date. Time will be assumed to be 00:00:00.
                                        When specified, the event timestamp will be generated randomly with in the interval defined
                                        by the starting_point and end_point parameters. If end_poiunt < starting_point, they will be
                                        swapped.
        "acceleration_factor"      -    This factor only applies when an exact timestamp or date has been provided as starting point
                                        and no end_point has been defined. It allows the time progression in the timestamp calculation
                                        to be altered. A value larger than 1 will accelerate generation and a value lower than 1 will
                                        slow it down. If a task is set up to run indexing for one hour with a fixed starting point of
                                        '2016-12-20 20:12:32' and an acceleration factor of 2.0, events will be generated in timestamp
                                        sequence covering a 2-hour window, '2017-02-20 20:12:32' to '2017-02-20 22:12:32' (approximately).
        "id_type"                  -    Type of document id to use for generated documents. Defaults to `auto`.
                                            auto         - Do not explicitly set id and let Elasticsearch assign automatically.
                                            seq          - Assign sequentialy incrementing integer ids to each document.
                                            uuid         - Assign a UUID4 id to each document.
                                            epoch_uuid   - Assign a UUIO4 identifier prefixed with the hex representation of the current
                                                           timestamp.
                                            epoch_md5    - Assign a base64 encoded MD5 hash of a UUID prefixed with the hex representation
                                                           of the current timestamp. (Note: Generating this type of id can be CPU intensive)
                                            md5          - MD5 hash of UUID in hex representation. (Note: Generating this type of id can be CPU intensive)
                                            sha1         - SHA1 hash of UUID in hex representation. (Note: Generating this type of id can be CPU intensive)
                                            sha256       - SHA256 hash of UUID in hex representation. (Note: Generating this type of id can be CPU intensive)
                                            sha384       - SHA384 hash of UUID in hex representation. (Note: Generating this type of id can be CPU intensive)
                                            sha512       - SHA512 hash of UUID in hex representation. (Note: Generating this type of id can be CPU intensive)
        "id_seq_probability"       -    If set, the probability an existing id will be used to simulate an update.
                                            Applied only when `id_type` is seq.
                                            Defaults to 0.0 which brings no updates. Must be in range [0.0, 1.0].
        "id_seq_low_id_bias"       -    If set, favor low ids with a very high bias. Must be True/False. Default is False.
        "id_delay_probability"     -    If id_type is set to `epoch_uuid` this parameter determnines the probability will be set in the
                                        past. This can be used to simulate a portion of the events arriving delayed. Must be in range [0.0, 1.0].
                                        Defaults to 0.0.
        "id_delay_secs"            -    If an event is delayed, this number of seconds will be deducted from the current timestamp.
    """
    def __init__(self, track, params, **kwargs):
        self._indices = track.indices
        self._params = params
        self._params = params
        self._randomevent = RandomEvent(params)

        self._bulk_size = 1000
        if 'bulk-size' in params.keys():
            self._bulk_size = params['bulk-size']

        self._id_type = "auto"
        self.seq_id = 0

        if 'id_type' in params.keys():
            if params['id_type'] in [
                    'auto', "seq", 'uuid', 'epoch_uuid', 'epoch_md5', 'md5',
                    'sha1', 'sha256', 'sha384', 'sha512'
            ]:
                self._id_type = params['id_type']
            else:
                logger.warning(
                    "[bulk] Invalid id_type ({}) specified. Will use default.".
                    format(params['id_type']))

        if self._id_type in ["epoch_uuid", "epoch_md5"]:
            if 'id_delay_probability' in params.keys():
                self._id_delay_probability = float(
                    params['id_delay_probability'])
            else:
                self._id_delay_probability = 0.0

            if 'id_delay_secs' in params.keys():
                self._id_delay_secs = int(params['id_delay_secs'])
            else:
                self._id_delay_secs = 0

        if self._id_type == "seq":
            self.orig_args = [track, params, kwargs]
            self._id_seq_probability = float(
                params['id_seq_probability']
            ) if 'id_seq_probability' in params else 0.0
            self._low_id_bias = str(params.get('id_seq_low_id_bias',
                                               False)).lower() == "true"
            if self._low_id_bias:
                logger.info("Will use low id bias for updates")
            else:
                logger.info("Will use uniform distribution for updates")

        self._default_index = False
        if 'index' not in params.keys():
            if len(self._indices) > 1:
                logger.debug(
                    "[bulk] More than one index specified in track configuration. Will use the first one ({})"
                    .format(self._indices[0].name))
            else:
                logger.debug(
                    "[bulk] Using index specified in track configuration ({})".
                    format(self._indices[0].name))

            self._params['index'] = self._indices[0].name
            self._default_index = True

        else:
            logger.debug(
                "[bulk] Index pattern specified in parameters ({}) will be used"
                .format(params['index']))

    def partition(self, partition_index, total_partitions):
        if self._params.get("id_type") == "seq":
            new_params = copy.deepcopy(self.orig_args[1])
            new_params["client_id"] = partition_index
            return ElasticlogsBulkSource(self.orig_args[0], new_params,
                                         **self.orig_args[2])
        else:
            seed = partition_index * self._params[
                "seed"] if "seed" in self._params else None
            random.seed(seed)
            return self

    def size(self):
        return 1

    def params(self):
        # Build bulk array
        bulk_array = []
        for x in range(0, self._bulk_size):
            evt, idx, typ = self._randomevent.generate_event()

            if self._id_type == 'auto':
                bulk_array.append('{"index": {"_index": "%s"}}"' % (idx))
            else:
                if self._id_type == 'uuid':
                    docid = self.__get_uuid()
                elif self._id_type == "seq":
                    docid = "%s-%d" % (self.__get_seq_id(),
                                       self._params["client_id"])
                elif self._id_type == 'sha1':
                    docid = hashlib.sha1(
                        self.__get_uuid().encode('utf8')).hexdigest()
                elif self._id_type == 'sha256':
                    docid = hashlib.sha256(
                        self.__get_uuid().encode('utf8')).hexdigest()
                elif self._id_type == 'sha384':
                    docid = hashlib.sha384(
                        self.__get_uuid().encode('utf8')).hexdigest()
                elif self._id_type == 'sha512':
                    docid = hashlib.sha512(
                        self.__get_uuid().encode('utf8')).hexdigest()
                elif self._id_type == 'md5':
                    docid = hashlib.md5(
                        self.__get_uuid().encode('utf8')).hexdigest()
                elif self._id_type == 'epoch_md5':
                    docid = self.__get_epoch_md5()
                else:
                    docid = self.__get_epoch_uuid()

                bulk_array.append('{"index": {"_index": "%s", "_id": "%s"}}"' %
                                  (idx, docid))

            bulk_array.append(evt)

        response = {
            "body": "\n".join(bulk_array),
            "action-metadata-present": True,
            "bulk-size": self._bulk_size
        }

        if "pipeline" in self._params.keys():
            response["pipeline"] = self._params["pipeline"]

        return response

    def __get_uuid(self):
        return str(uuid.uuid4()).replace('-', '')

    def __get_epoch_uuid(self):
        u = self.__get_uuid()
        ts = int(time.time())

        if 0 < self._id_delay_probability < random.random():
            ts = ts - self._id_delay_secs

        return '{:x}{}'.format(ts, u)

    def __get_epoch_md5(self):
        u = self.__get_uuid()
        md5_str = str(
            base64.urlsafe_b64encode(hashlib.md5(
                u.encode('utf8')).digest()))[2:24]
        ts = int(time.time())

        if 0 < self._id_delay_probability < random.random():
            ts = ts - self._id_delay_secs

        return hex(ts)[2:10] + md5_str

    def __get_seq_id(self):
        _id = self.seq_id
        if random.uniform(0, 1) < self._id_seq_probability:
            # conflict
            if self._low_id_bias:
                # update; heavily bias towards older ids
                _p = 10
                _min = 0
                _max = _id
                # _p ~> 0: results closer to min, _p >> 0: results closer to max
                _id = _min + (_max - _min) * pow(random.random(), _p)
            else:
                # update; pick id from pure uniform distribution
                _id = random.randint(0, _id - 1 if _id > 0 else 0)
        else:
            # new document
            self.__incr_seq_id()

        return "%012d" % _id

    def __incr_seq_id(self):
        self.seq_id += 1
class ElasticlogsBulkSource:
    """
    Generates a bulk indexing request for elasticlogs data.

    It expects the parameter hash to contain the following keys:
        "bulk-size"            -    Integer indicating events generated per bulk request. Defaults to 1000.
        "index"                -    Name of index, index prefix or alias documents should be indexed into. The index name
                                    can be made to generate time based indices by including date formatting in the name.
                                    'test-<yyyy>-<mm>-<dd>-<hh>' will generate an hourly index. (mandatory)
        "type"                 -    String specifyting the event type. Defaults to type of index specification or if this 
                                    is not present 'logs'.
        "starting_point"       -    String specifying the starting point for event time generation. It supports absolute or
                                    relative values as follows:
                                        'now'                 - Always evaluated to the current timestamp at time of generation
                                        'now-1h'              - Offset to the current timestamp. Consists of a number and 
                                                                either m (minutes), h (hours) or d (days).
                                        '2017-02-20 20:12:32' - Exact timestamp.
                                        '2017-02-20'          - Date. Time will be assumed to be 00:00:00.
                                    If a relative starting point (based on now) is provided, this will be used for generation.
                                    In the case an exact timestamp is provided as starting point, the difference to now will
                                    be calculated when the generation starts and this will be used as an offset for all events. 
                                    If an interval is provided by also specifying an end_point, the range will be calculated for 
                                    each bulk request and each event will be assigned a random timestamp withion this range.
                                    starting point. Defaults to 'now'.
        "end_point"            -    String specifying the end point for event time generation. It supports absolute or
                                    relative values as follows:
                                        'now'                 - Always evaluated to the current timestamp at time of generation
                                        'now-1h'              - Offset to the current timestamp. Consists of a number and 
                                                                either m (minutes), h (hours) or d (days).
                                        '2017-02-20 20:12:32' - Exact timestamp.
                                        '2017-02-20'          - Date. Time will be assumed to be 00:00:00.
                                    When specified, the event timestamp will be generated randomly with in the interval defined 
                                    by the starting_point and end_point parameters. If end_poiunt < starting_point, they will be 
                                    swapped. 
        "acceleration_factor"  -    This factor only applies when an exact timestamp or date has been provided as starting point 
                                    and no end_point has been defined. It allows the time progression in the timestamp calculation 
                                    to be altered. A value larger than 1 will accelerate generation and a value lower than 1 will 
                                    slow it down. If a task is set up to run indexing for one hour with a fixed starting point of 
                                    '2016-12-20 20:12:32' and an acceleration factor of 2.0, events will be generated in timestamp 
                                    sequence covering a 2-hour window, '2017-02-20 20:12:32' to '2017-02-20 22:12:32' (approximately).
    """
    def __init__(self, indices, params):
        self._indices = indices
        self._params = params
        self._randomevent = RandomEvent(params)

        self._bulk_size = 1000
        if 'bulk-size' in params.keys():
            self._bulk_size = params['bulk-size']

        self._default_index = False
        if 'index' not in params.keys():
            if len(indices) > 1:
                logger.debug(
                    "[bulk] More than one index specified in track configuration. Will use the first one ({})"
                    .format(indices[0].name))
            else:
                logger.debug(
                    "[bulk] Using index specified in track configuration ({})".
                    format(indices[0].name))

            self._params['index'] = indices[0].name
            self._default_index = True

        else:
            logger.debug(
                "[bulk] Index pattern specified in parameters ({}) will be used"
                .format(params['index']))

        if 'type' not in params.keys():
            self._params['type'] = indices[0].types[0].name

    def partition(self, partition_index, total_partitions):
        return self

    def size(self):
        return 1

    def params(self):
        # Build bulk array
        bulk_array = []
        for x in range(0, self._bulk_size):
            evt, idx, typ = self._randomevent.generate_event()
            bulk_array.append('{"index": {"_index": "%s", "_type": "%s"}}"' %
                              (idx, typ))
            bulk_array.append(evt)

        response = {
            "body": "\n".join(bulk_array),
            "action_metadata_present": True,
            "bulk-size": self._bulk_size
        }

        if "pipeline" in self._params.keys():
            response["pipeline"] = self._params["pipeline"]

        return response
class MetricbeatBulkSource:
    """
    Generates a bulk indexing request for Metyricbeat data.

    It expects the parameter hash to contain the following keys:
        "bulk-size"            -    Integer indicating events generated per bulk request. Defaults to 1000.
        "index"                -    Name of index, index prefix or alias documents should be indexed into. The index name
                                    can be made to generate time based indices by including date formatting in the name.
                                    'test-<yyyy>-<mm>-<dd>-<hh>' will generate an hourly index. (mandatory)
        "starting_point"       -    String specifying the starting point for event time generation. It supports absolute or
                                    relative values as follows:
                                        'now'                 - Always evaluated to the current timestamp at time of generation
                                        'now-1h'              - Offset to the current timestamp. Consists of a number and 
                                                                either m (minutes), h (hours) or d (days).
                                        '2017-02-20 20:12:32' - Exact timestamp.
                                        '2017-02-20'          - Date. Time will be assumed to be 00:00:00.
                                    If a relative starting point (based on now) is provided, this will be used for generation.
                                    In the case an exact timestamp is provided as starting point, the difference to now will
                                    be calculated when the generation starts and this will be used as an offset for all events. 
                                    If an interval is provided by also specifying an end_point, the range will be calculated for 
                                    each bulk request and each event will be assigned a random timestamp withion this range.
                                    starting point. Defaults to 'now'.
        "end_point"            -    String specifying the end point for event time generation. It supports absolute or
                                    relative values as follows:
                                        'now'                 - Always evaluated to the current timestamp at time of generation
                                        'now-1h'              - Offset to the current timestamp. Consists of a number and 
                                                                either m (minutes), h (hours) or d (days).
                                        '2017-02-20 20:12:32' - Exact timestamp.
                                        '2017-02-20'          - Date. Time will be assumed to be 00:00:00.
                                    When specified, the event timestamp will be generated randomly with in the interval defined 
                                    by the starting_point and end_point parameters. If end_poiunt < starting_point, they will be 
                                    swapped. 
        "acceleration_factor"  -    This factor only applies when an exact timestamp or date has been provided as starting point 
                                    and no end_point has been defined. It allows the time progression in the timestamp calculation 
                                    to be altered. A value larger than 1 will accelerate generation and a value lower than 1 will 
                                    slow it down. If a task is set up to run indexing for one hour with a fixed starting point of 
                                    '2016-12-20 20:12:32' and an acceleration factor of 2.0, events will be generated in timestamp 
                                    sequence covering a 2-hour window, '2017-02-20 20:12:32' to '2017-02-20 22:12:32' (approximately).
        "id_type"              -    Type of document id to use for generated documents. Defaults to `auto`.
                                        auto         - Do not explicitly set id and let Elasticsearch assign automatically.
                                        uuid         - Assign a UUID4 id to each document.
                                        epoch_uuid   - Assign a UUIO4 identifier prefixed with the hex representation of the current 
                                                       timestamp.
                                        sha1         - SHA1 hash of UUID in hex representation. (Note: Generating this type of id can be CPU intensive)
                                        sha256       - SHA256 hash of UUID in hex representation. (Note: Generating this type of id can be CPU intensive)
                                        sha384       - SHA384 hash of UUID in hex representation. (Note: Generating this type of id can be CPU intensive)
                                        sha512       - SHA512 hash of UUID in hex representation. (Note: Generating this type of id can be CPU intensive)
        "id_delay_probability" -    If id_type is set to `epoch_uuid` this parameter determnines the probability will be set in the 
                                    past. This can be used to simulate a portion of the events arriving delayed. Must be in range [0.0, 1.0].
                                    Defaults to 0.0.
        "id_delay_secs".       -    If an event is delayed, this number of seconds will be deducted from the current timestamp.
    """
    def __init__(self, track, params, **kwargs):
        self._indices = track.indices
        self._params = params
        self._params = params
        self._randomevent = RandomEvent(params)

        self._bulk_size = 1000
        if 'bulk-size' in params.keys():
            self._bulk_size = params['bulk-size']

        self._id_type = "auto"
        if 'id_type' in params.keys():
            if params['id_type'] in [
                    'auto', 'uuid', 'epoch_uuid', 'sha1', 'sha256', 'sha384',
                    'sha512'
            ]:
                self._id_type = params['id_type']
            else:
                logger.warning(
                    "[bulk] Invalid id_type ({}) specified. Will use default.".
                    format(params['id_type']))

        if self._id_type == "epoch_uuid":
            if 'id_delay_probability' in params.keys():
                self._id_delay_probability = float(
                    params['id_delay_probability'])
            else:
                self._id_delay_probability = 0.0

            if 'id_delay_secs' in params.keys():
                self._id_delay_secs = int(params['id_delay_secs'])
            else:
                self._id_delay_secs = 0

        self._default_index = False
        if 'index' not in params.keys():
            if len(self._indices) > 1:
                logger.debug(
                    "[bulk] More than one index specified in track configuration. Will use the first one ({})"
                    .format(self._indices[0].name))
            else:
                logger.debug(
                    "[bulk] Using index specified in track configuration ({})".
                    format(self._indices[0].name))

            self._params['index'] = self._indices[0].name
            self._default_index = True

        else:
            logger.debug(
                "[bulk] Index pattern specified in parameters ({}) will be used"
                .format(params['index']))

    def partition(self, partition_index, total_partitions):
        seed = partition_index * self._params[
            "seed"] if "seed" in self._params else None
        random.seed(seed)
        return self

    def size(self):
        return 1

    def params(self):
        # Build bulk array
        bulk_array = []
        for x in range(0, self._bulk_size):
            evt, idx, typ = self._randomevent.generate_event()

            if self._id_type == 'auto':
                bulk_array.append('{"index": {"_index": "%s"}}"' % (idx))
            else:
                if self._id_type == 'uuid':
                    docid = self.__get_uuid()
                elif self._id_type == 'sha1':
                    docid = hashlib.sha1(
                        self.__get_uuid().encode()).hexdigest()
                elif self._id_type == 'sha256':
                    docid = hashlib.sha256(
                        self.__get_uuid().encode()).hexdigest()
                elif self._id_type == 'sha384':
                    docid = hashlib.sha384(
                        self.__get_uuid().encode()).hexdigest()
                elif self._id_type == 'sha512':
                    docid = hashlib.sha512(
                        self.__get_uuid().encode()).hexdigest()
                else:
                    docid = self.__get_epoch_uuid()

                bulk_array.append('{"index": {"_index": "%s", "_id": "%s"}}"' %
                                  (idx, docid))

            bulk_array.append(evt)

        response = {
            "body": "\n".join(bulk_array),
            "action-metadata-present": True,
            "bulk-size": self._bulk_size
        }

        if "pipeline" in self._params.keys():
            response["pipeline"] = self._params["pipeline"]

        return response

    def __get_uuid(self):
        u = str(uuid.uuid4())
        return u[0:8] + u[9:13] + u[14:18] + u[19:23] + u[24:36]

    def __get_epoch_uuid(self):
        u = self.__get_uuid()
        ts = int(time.time())

        if (self._id_delay_probability > 0
                and self._id_delay_probability < random.random()):
            ts = ts - self._id_delay_secs

        return hex(ts)[2:10] + u
        'raw',
    ])
except getopt.GetoptError as err:
    print('ERROR:', err)
    sys.exit(1)

for opt, arg in options:
    if opt in ('-c', '--count'):
        if arg.isdigit():
            documents_to_generate = int(arg)
            if documents_to_generate < 1:
                print(
                    "ERROR: -c/--count must be followed by a positive integer."
                )
                sys.exit(0)
        else:
            print("ERROR: -c/--count must be followed by a positive integer.")
            sys.exit(0)
    elif opt in ('-r', '--raw'):
        raw_mode = True

randomevent = RandomEvent({})

for k in range(documents_to_generate):
    evt, idx, typ = randomevent.generate_event()

    if raw_mode:
        print(evt['message'])
    else:
        print(json.dumps(evt))