def si_likelihood(pop, event_db, alpha, beta): """Determine the likelihood of the data from an SI simulation given alpha and beta """ daily_likelihood=[0]*(np.max(event_db.time)-1) t=1 infectious=find_infectious(event_db, t) susceptible=find_susceptible(pop, event_db, t) for t in range(1, np.max(event_db.time)): new_infectious=find_infectious(event_db, t+1) new_susceptible=find_susceptible(pop, event_db, t+1) infection_probs=infect_prob(pop, alpha, beta, infectious, susceptible) def new_infections_func(x): return any(susceptible.ind_ID[x] == new_infectious.ind_ID) new_infections = map(new_infections_func, susceptible.index) daily_likelihood[t-1]=np.prod(np.subtract(1, infection_probs[np.where(np.invert(new_infections))]))*np.prod(infection_probs[np.where(new_infections)]) infectious=new_infectious susceptible=new_susceptible return np.prod(daily_likelihood)
def plot_si(pop, event_db, time): """This will create a simple scatterplot of susceptible and infectious individuals at a given time """ i=find_infectious(event_db, time) s=find_susceptible(pop, event_db, time) status=pd.DataFrame({"status":np.append(np.repeat("i", i.shape[0]), np.repeat("s", s.shape[0])), "colour":np.append(np.repeat("k", i.shape[0]), np.repeat("b", s.shape[0])), "ind_ID":np.append(i.ind_ID, s.ind_ID), "x":pop.iloc[np.append(i.ind_ID, s.ind_ID)].x, "y":pop.iloc[np.append(i.ind_ID, s.ind_ID)].y}) plt.scatter(status.x, status.y, c=status.colour, s=60, edgecolors='none')