def get_coverage(self, cpp, path):
     tmp_pcd = PointCloud(self.print, points=cpp.coverable_pcd.points)
     tmp_pcd.visit_path(path)
     return tmp_pcd.get_coverage_efficiency()
Пример #2
0
class RandomSpiralSegment:
    """A class to generate a segment of Spiral path. Used in Sample-Based BAstar 
    CPP Algorithm.
    """
    def __init__(self, print, motion_planner, starting_point,
                 visited_waypoints):
        """
        Args:
            print: function for printing messages
            motion_planner:  Motion Planner of the robot wihch also has the Point Cloud
            starting_point: A [x,y,z] np.array of the start position of the robot
            visited_waypoints: A Nx3 array with points that has been visited and should be avoided
        """

        self.visited_waypoints = visited_waypoints
        self.start = starting_point
        self.print = print
        self.pcd = PointCloud(print, points=motion_planner.traversable_points)
        self.motion_planner = motion_planner
        current_angle = 0

        self.path = np.empty((0, 3))
        next_starting_point = starting_point

        while True:

            local_spiral_path, current_position = self.get_path_until_dead_zone(
                next_starting_point, current_angle)
            self.path = np.append(self.path, local_spiral_path, axis=0)
            self.visited_waypoints = np.append(self.visited_waypoints,
                                               local_spiral_path,
                                               axis=0)

            next_starting_point = self.wavefront_algorithm(current_position)

            if next_starting_point is False:
                break

            if np.linalg.norm(next_starting_point - current_position
                              ) > RANDOM_BASTAR_VARIANT_DISTANCE:
                break

            path_to_next_starting_point = self.motion_planner.Astar(
                current_position, next_starting_point)

            if path_to_next_starting_point is False:
                break

            self.path = np.append(self.path,
                                  path_to_next_starting_point,
                                  axis=0)
            current_position = next_starting_point

            if len(self.path) >= 2:
                current_angle = self.get_angle(self.path[-2], current_position)

        self.end = current_position
        self.print("Length of path: " + str(len(self.path)))

        if len(self.path) > 1:
            self.pcd.visit_path(self.path)
            self.covered_points_idx = self.pcd.covered_points_idx

        self.coverage = self.pcd.get_coverage_efficiency()

        self.pcd = None
        self.motion_planner = None

    def wavefront_algorithm(self, start_position):
        """Using Wavefront algorithm to find the closest obstacle free uncovered position.

        Args:
            start_position: A [x,y,z] np.array of the start position of the search

        Returns:
            An obstacle free uncovered position.
        """
        last_layer = np.array([start_position])
        visited = np.array([start_position])
        visited_points = np.append(self.visited_waypoints, self.path, axis=0)
        while len(last_layer):
            new_layer = np.empty((0, 3))
            for pos in last_layer:
                neighbours = self.get_neighbours(pos)

                for neighbour in neighbours:

                    if self.has_been_visited(neighbour, visited):
                        continue

                    if not self.motion_planner.is_valid_step(pos, neighbour):
                        continue

                    if not self.has_been_visited(neighbour, visited_points):
                        return neighbour

                    visited = np.append(visited, [neighbour], axis=0)
                    new_layer = np.append(new_layer, [neighbour], axis=0)

            last_layer = new_layer

        self.print(
            "FAIL. No new uncovered obstacle free positions could be found.")
        return False

    def get_path_until_dead_zone(self, current_position, current_angle):
        """Covers the area in an inward spiral motion until  a dead zone is reached.

        Args:
            current_position: A [x,y,z] np.array of the start position of the search
            current_angle: A float value representing the starting angle in radians 

        Returns:
            New part of the path with waypoints and the position of the robot at the 
            end of the path.
        """

        local_path = np.array([current_position])
        dead_zone_reached = False
        visited_points = np.append(self.visited_waypoints, self.path, axis=0)

        while not dead_zone_reached:
            dead_zone_reached = True
            neighbours = self.get_neighbours_for_spiral(
                current_position, current_angle)

            for neighbour in neighbours:

                if self.is_blocked(current_position, neighbour,
                                   visited_points):
                    continue

                local_path = np.append(local_path, [neighbour], axis=0)
                visited_points = np.append(visited_points, [neighbour], axis=0)
                current_angle = self.get_angle(current_position, neighbour)
                current_position = neighbour

                dead_zone_reached = False
                break

        return local_path, current_position

    def get_angle(self, from_pos, to_pos):
        """Calculates the angle of the robot after making a step

        Args:
            from_pos: A [x,y,z] np.array of the start position 
            to_pos: A [x,y,z] np.array of the end position

        Returns:
            An angle in radians
        """
        vec = to_pos[0:2] - from_pos[0:2]
        return np.angle(vec[0] + vec[1] * 1j)

    def is_in_list(self, list, array):
        """Checks if an array is in a list by checking if it has 
        values close to it. 

        Args:
            list: list with arrays
            array: array to check

        Returns:
            True if it finds the array in the list 
        """
        diffs = np.linalg.norm(list - array, axis=1)
        return np.any(diffs < 0.05)

    def get_neighbours_for_spiral(self, current_position, current_angle):
        """Finds neighbours of a given position. And return them in the order
        to create the inward spiral motion.

        Args:
            current_position: A [x,y,z] np.array of the start position 
            current_angle: A float value representing the starting angle in radians

        Returns:
            List of neighbours in specific order to get the inward spiral motion,
        """
        directions = []
        for direction_idx in range(8):
            angle = direction_idx / 8 * np.pi * 2 + current_angle
            x = current_position[0] + np.cos(angle) * SPIRAL_STEP_SIZE
            y = current_position[1] + np.sin(angle) * SPIRAL_STEP_SIZE
            z = current_position[2]
            pos = np.array([x, y, z])
            directions.append(self.pcd.find_k_nearest(pos, 1)[0])

        right, forwardright, forward, forwardleft, left, backleft, back, backright = directions
        return [
            backright, right, forwardright, forward, forwardleft, left,
            backleft
        ]

    def get_neighbours(self, current_position):
        """Finds all neighbours of a given position. 

        Args:
            current_position: A [x,y,z] np.array of the start position 

        Returns:
            All 8 neighbours of the given position
        """
        directions = []
        for direction_idx in range(8):
            angle = direction_idx / 8 * np.pi * 2
            x = current_position[0] + np.cos(angle) * SPIRAL_STEP_SIZE
            y = current_position[1] + np.sin(angle) * SPIRAL_STEP_SIZE
            z = current_position[2]
            pos = np.array([x, y, z])

            directions.append(self.pcd.find_k_nearest(pos, 1)[0])

        return directions

    def has_been_visited(self, point, path=None):
        """Checks if a point has been visited. Looks if the distance to a point in the
        path is smaller than RANDOM_BASTAR_VISITED_TRESHOLD.

        Args:
            point: A [x,y,z] np.array of the point that should be checked.
            path (optional): Specific path. Defaults to None.

        Returns:
            True if the point has been classified as visited
        """
        if path is None:
            path = self.path

        distances = np.linalg.norm(path - point, axis=1)
        return np.any(distances <= RANDOM_BASTAR_VISITED_TRESHOLD)

    def is_blocked(self, from_point, to_point, path=None):
        """Checks if a step is valid by looking if the end point has been visited 
        or is an obstacle.

        Args:
            from_point: A [x,y,z] np.array of the start position
            to_point: A [x,y,z] np.array of the end position
            path (optional): Specific path. Defaults to None.

        Returns:
            True if the point has been classified as blocked
        """
        if path is None:
            path = self.path

        if self.has_been_visited(to_point, path):
            return True

        if not self.motion_planner.is_valid_step(from_point, to_point):
            return True

        return False
Пример #3
0
class RandomBAstar2(CPPSolver):
    ''' Solving the Coverage Path Planning Problem with Random Sample BAstar with Inward Spiral
    '''
    def __init__(self,
                 print,
                 motion_planner,
                 coverable_pcd,
                 time_limit=None,
                 parameters=None):
        '''
        Args:
            print: function for printing messages
            motion_planner: Motion Planner of the robot wihch also has the Point Cloud
        '''
        self.print = print
        super().__init__(print, motion_planner, coverable_pcd, time_limit)
        self.name = "Random BAstar"

        if parameters is None:
            self.max_distance = RANDOM_BASTAR_VARIANT_DISTANCE
            self.max_distance_part_II = RANDOM_BASTAR_VARIANT_DISTANCE_PART_II
            self.nbr_of_angles = RANDOM_BASTAR_NUMBER_OF_ANGLES
            self.ba_exploration = RANDOM_BASTAR_PART_I_COVERAGE
            self.coverage_2 = COVEREAGE_EFFICIENCY_GOAL
            self.min_spiral_coverage = RANDOM_BASTAR_MIN_SPIRAL_LENGTH
            self.min_bastar_coverage = RANDOM_BASTAR_MIN_COVERAGE
            self.max_iterations = RANDOM_BASTAR_MAX_ITERATIONS
            self.step_size = BASTAR_STEP_SIZE
            self.visited_threshold = BASTAR_VISITED_TRESHOLD
        else:
            self.max_distance = parameters["max_distance"]
            self.max_distance_part_II = parameters["max_distance_part_II"]
            self.ba_exploration = parameters["ba_exploration"]
            self.min_spiral_coverage = parameters["min_spiral_coverage"]
            self.min_bastar_coverage = parameters["min_bastar_coverage"]
            self.step_size = parameters["step_size"]
            self.visited_threshold = parameters["visited_threshold"]

        self.randombastar_stats = {}
        self.randombastar_stats_over_time = []

    def get_cpp_path(self, start_point, goal_coverage=None):
        """Generates a path that covers the area using BAstar Algorithm.

        Args:
            start_point: A [x,y,z] np.array of the start position of the robot

        Returns:
            Nx3 array with waypoints
        """

        self.start_tracking()
        self.move_to(start_point)
        self.all_segments = []
        self.visited_waypoints = np.empty((0, 3))

        self.tmp_coverable_pcd = PointCloud(self.print,
                                            points=self.coverable_pcd.points)
        self.explored_pcd = PointCloud(self.print,
                                       points=self.coverable_pcd.points)
        self.uncovered_coverable_points_idx = np.arange(
            len(self.tmp_coverable_pcd.points))
        iter = 0

        #### PART 0 - Border ####
        #self.print("PART 0 - Covering border")
        #coverable_pcd = PointCloud(self.print, points=self.coverable_pcd.points)
        #border_segment = RandomBorderSegment(self.print, self.motion_planner, start_point, self.visited_waypoints, coverable_pcd, self.max_distance_part_II, self.step_size, self.visited_threshold, self.time_left())
        #self.add_segment(border_segment)
        #self.explored_pcd.covered_points_idx = np.unique(np.append(self.explored_pcd.covered_points_idx, border_segment.covered_points_idx))
        #self.print("Coverage of border: " + str(border_segment.coverage))
        #self.print("Border cost: "+ str(self.get_cost_per_coverage(border_segment)))

        #### PART 1 - BA* ####
        self.print("PART 1 - Covering with BA*")
        coverage = self.tmp_coverable_pcd.get_coverage_efficiency()
        exploration = self.explored_pcd.get_coverage_efficiency()
        while exploration < self.ba_exploration and coverage < goal_coverage and not self.time_limit_reached(
        ):
            iter += 1
            #self.print("Uncovered points: " + str(len(self.uncovered_coverable_points_idx)))

            random_point = self.get_random_uncovered_point(
                ignore_list=self.explored_pcd.covered_points_idx)

            if random_point is False:
                break

            closest_border_point, _ = self.find_closest_border(
                random_point, self.step_size, self.visited_threshold,
                self.visited_waypoints)

            BA_segments_from_point = []

            for angle_idx in range(4):

                angle_offset = angle_idx * 2 * np.pi / 4
                coverable_pcd = PointCloud(self.print,
                                           points=self.coverable_pcd.points)
                new_BAstar_path = BAStarSegment(
                    self.print, self.motion_planner, closest_border_point,
                    angle_offset, self.visited_waypoints, coverable_pcd,
                    self.max_distance, self.step_size, self.visited_threshold,
                    self.time_left())

                BA_segments_from_point.append(new_BAstar_path)

                #if new_BAstar_path.coverage == 0:
                #    break
            self.min_bastar_coverage = 0

            #self.print([self.get_cost_per_coverage(a) for a in BA_segments_from_point])
            #accepted_segments = list(filter(lambda x: x.coverage > self.min_bastar_coverage, BA_segments_from_point))
            accepted_segments = list(
                filter(lambda x: self.get_cost_per_coverage(x) < 4500,
                       BA_segments_from_point))
            self.print([
                self.get_cost_per_coverage(a) for a in BA_segments_from_point
            ])
            if not accepted_segments:
                coverable_pcd = PointCloud(self.print,
                                           points=self.coverable_pcd.points)
                spiral_segment = RandomSpiralSegment(
                    self.print, self.motion_planner, closest_border_point,
                    self.visited_waypoints, coverable_pcd,
                    self.max_distance_part_II, self.step_size,
                    self.visited_threshold, self.time_left())
                cost_per_coverage = self.get_cost_per_coverage(spiral_segment)
                self.print("cost_per_coverage spiral: " +
                           str(cost_per_coverage))
                if cost_per_coverage < 15000:
                    self.add_segment(spiral_segment)
                    best_BA_segment = spiral_segment
                    self.print("COVERING WITH SPIRAL INSTEAD")
                else:
                    best_BA_segment = max(BA_segments_from_point,
                                          key=operator.attrgetter("coverage"))
            else:
                #best_BA_segment = max(BA_segments_from_point, key=operator.attrgetter("coverage"))
                costs = [
                    self.get_cost_per_coverage(segment)
                    for segment in accepted_segments
                ]
                #self.print(costs)

                best_BA_segment_idx = np.argmin(costs)
                best_BA_segment = accepted_segments[best_BA_segment_idx]
                self.add_segment(best_BA_segment)
                coverage = self.tmp_coverable_pcd.get_coverage_efficiency()
                self.print_update(coverage)
                self.randombastar_stats_over_time.append({
                    "time":
                    timeit.default_timer() - self.start_time,
                    "coverage":
                    coverage,
                    "iteration":
                    iter,
                    "path":
                    best_BA_segment.path,
                    "segment":
                    best_BA_segment
                })

            self.print(
                str(iter) + "- bastar coverage: " +
                str(best_BA_segment.coverage))
            self.explored_pcd.covered_points_idx = np.unique(
                np.append(self.explored_pcd.covered_points_idx,
                          best_BA_segment.covered_points_idx))
            exploration = self.explored_pcd.get_coverage_efficiency()
            self.print("exploration: " + str(exploration))

        self.print("Number of found paths: " + str(len(self.all_segments)))

        self.randombastar_stats["Part1_segments"] = len(self.all_segments)
        self.randombastar_stats["Part1_coverage"] = coverage
        self.randombastar_stats["Part1_iterations"] = iter
        self.randombastar_stats["Part1_time"] = timeit.default_timer(
        ) - self.start_time
        total = 0
        for segment in self.all_segments[1:]:
            total += self.get_cost_per_coverage(segment)
        self.print("Bastar ost: " +
                   str(total / self.randombastar_stats["Part1_segments"]))

        #### PART 2 - Inward Spiral ####
        self.print("PART 2 - Covering with Inward spiral")
        self.explored_pcd.covered_points_idx = self.tmp_coverable_pcd.covered_points_idx

        iter = 0
        while coverage < goal_coverage and not self.time_limit_reached():
            iter += 1
            #self.print("Uncovered points: " + str(len(self.uncovered_coverable_points_idx)))

            random_point = self.get_random_uncovered_point()
            if random_point is False:
                break

            closest_border_point, _ = self.find_closest_border(
                random_point, self.step_size, self.visited_threshold,
                self.visited_waypoints)
            coverable_pcd = PointCloud(self.print,
                                       points=self.coverable_pcd.points)
            spiral_segment = RandomSpiralSegment(
                self.print, self.motion_planner, closest_border_point,
                self.visited_waypoints, coverable_pcd,
                self.max_distance_part_II, self.step_size,
                self.visited_threshold, self.time_left())

            self.print(
                str(iter) + "- spiral coverage: " +
                str(spiral_segment.coverage))
            self.print(self.get_cost_per_coverage(spiral_segment))
            if self.get_cost_per_coverage(spiral_segment) > 15000:

                close_coverable_points_idx = spiral_segment.covered_points_idx
                if not len(close_coverable_points_idx):
                    close_coverable_points_idx = self.tmp_coverable_pcd.points_idx_in_radius(
                        closest_border_point, self.visited_threshold)
                self.uncovered_coverable_points_idx = self.delete_values(
                    self.uncovered_coverable_points_idx,
                    close_coverable_points_idx)
                #self.print("Too short spiral")
                continue

            self.add_segment(spiral_segment)
            coverage = self.tmp_coverable_pcd.get_coverage_efficiency()
            self.randombastar_stats_over_time.append({
                "time":
                timeit.default_timer() - self.start_time,
                "coverage":
                coverage,
                "iteration":
                iter,
                "path":
                spiral_segment.path,
                "segment":
                spiral_segment
            })

            #self.print("length: " + str(len(spiral_segment.path)))
            self.print_update(coverage)
            #self.print("Uncovered points: " + str(len(self.uncovered_coverable_points_idx)))

        self.randombastar_stats["Part2_segments"] = len(
            self.all_segments) - self.randombastar_stats["Part1_segments"]
        self.randombastar_stats["Part2_coverage"] = coverage
        self.randombastar_stats["Part2_iterations"] = iter
        self.randombastar_stats["Part2_time"] = timeit.default_timer(
        ) - self.start_time
        total = 0
        if self.randombastar_stats["Part2_segments"]:
            for segment in self.all_segments[
                    self.randombastar_stats["Part1_segments"]:]:
                total += self.get_cost_per_coverage(segment)
            self.print("spiral ost: " +
                       str(total / self.randombastar_stats["Part2_segments"]))

        paths_to_visit_in_order = self.traveling_salesman(self.all_segments)

        self.follow_paths(start_point, paths_to_visit_in_order)

        #self.print_stats(self.path)
        self.print(self.randombastar_stats)

        return self.path

    def get_cost_per_coverage(self, segment):
        if segment.coverage == 0:
            return np.Inf

        def get_length_of_path(path):
            ''' Calculates length of the path in meters
            '''
            length = 0
            for point_idx in range(len(path) - 1):
                length += np.linalg.norm(path[point_idx] - path[point_idx + 1])
            return length

        def get_total_rotation(path):
            ''' Calculates the total rotation made by the robot while executing the path
            '''

            rotation = 0

            for point_idx in range(len(path) - 2):
                prev = (path[point_idx + 1] -
                        path[point_idx]) / np.linalg.norm(path[point_idx] -
                                                          path[point_idx + 1])
                next = (path[point_idx + 2] - path[point_idx + 1]
                        ) / np.linalg.norm(path[point_idx + 2] -
                                           path[point_idx + 1])
                dot_product = np.dot(prev, next)
                curr_rotation = np.arccos(dot_product)
                if not np.isnan(curr_rotation):
                    rotation += abs(curr_rotation)

            return rotation

        length_of_path = get_length_of_path(segment.path)
        rotation = get_total_rotation(segment.path[:, 0:2])
        return (length_of_path + rotation) / segment.coverage

    def traveling_salesman(self, paths):
        """Using Traveling Salesman Algorithm to order the path in an order
        that would minimise the total length of the path.

        Args:
            paths: List of paths of types RandomSpiralSegment and BAStarSegment

        Returns:
            Ordered list of paths
        """
        tree = Tree("BAstar paths")
        start_nodes_idx = []
        end_nodes_idx = []

        def get_weight(from_idx, to_idx):
            from_point = tree.nodes[from_idx]
            to_point = tree.nodes[to_idx]
            return 100 + np.linalg.norm(
                to_point[0:2] -
                from_point[0:2]) + 10 * abs(to_point[2] - from_point[2])

        for path in paths:
            start_point = path.start
            end_point = path.end
            start_point_node_idx = tree.add_node(start_point)
            start_nodes_idx.append(start_point_node_idx)

            for node_idx, point in enumerate(tree.nodes[:-1]):
                tree.add_edge(start_point_node_idx, node_idx,
                              get_weight(start_point_node_idx, node_idx))

            end_point_node_idx = tree.add_node(end_point)
            end_nodes_idx.append(end_point_node_idx)
            for node_idx, point in enumerate(tree.nodes[:-2]):
                tree.add_edge(end_point_node_idx, node_idx,
                              get_weight(end_point_node_idx, node_idx))

            tree.add_edge(start_point_node_idx, end_point_node_idx, 0)

        traveling_Salesman_path = tree.get_traveling_salesman_path()
        self.print(traveling_Salesman_path)

        paths_in_order = []
        current_position = np.array([0, 0, 0])

        for node_idx in traveling_Salesman_path:

            if np.array_equal(tree.nodes[node_idx], current_position):
                continue

            if node_idx in start_nodes_idx:
                path_idx = start_nodes_idx.index(node_idx)
                current_path = paths[path_idx]
                paths_in_order.append(current_path)
            elif node_idx in end_nodes_idx:
                path_idx = end_nodes_idx.index(node_idx)
                current_path = paths[path_idx]
                current_path.path = np.flip(current_path.path, 0)
                current_path.end = current_path.start
                current_path.start = tree.nodes[node_idx]
                paths_in_order.append(current_path)
            else:
                self.print("Not start or end point..")

            current_position = current_path.end

        return paths_in_order

    def add_segment(self, segment):
        self.all_segments.append(segment)
        self.visited_waypoints = np.append(self.visited_waypoints,
                                           segment.path,
                                           axis=0)
        self.tmp_coverable_pcd.covered_points_idx = np.unique(
            np.append(self.tmp_coverable_pcd.covered_points_idx,
                      segment.covered_points_idx))
        self.uncovered_coverable_points_idx = self.delete_values(
            self.uncovered_coverable_points_idx, segment.covered_points_idx)

    def get_covered_points_idx_from_paths(self, paths):
        """Finds indices of all covered points by the given paths

        Args:
            paths: Generated Paths of class RandomBAstarSegment

        Returns:
            List of points indices that has been covered
        """
        covered_points_idx = np.array([])

        for path in paths:
            covered_points_idx = np.unique(
                np.append(covered_points_idx, path.covered_points_idx, axis=0))

        return covered_points_idx

    def follow_paths(self, start_position, paths_to_visit_in_order):
        """Connects all paths with Astar and make the robot walk through the paths.

        Args:
            start_position: A [x,y,z] np.array of the start position of the robot
            paths_to_visit_in_order:    Ordered list of paths of types RandomSpiralSegment 
                                        and BAStarSegment
        """
        current_position = start_position

        for idx, path in enumerate(paths_to_visit_in_order):

            self.print("Moving to start of path " + str(idx + 1) + " out of " +
                       str(len(paths_to_visit_in_order)))
            path_to_next_starting_point = self.motion_planner.Astar(
                current_position, path.start)
            self.follow_path(path_to_next_starting_point)
            self.path = np.append(self.path, path.path, axis=0)
            self.coverable_pcd.covered_points_idx = np.unique(
                np.append(self.coverable_pcd.covered_points_idx,
                          path.covered_points_idx,
                          axis=0))
            current_position = self.path[-1]

    def get_random_uncovered_point(self, ignore_list=None, iter=False):
        """Returns a random uncovered point

        Args:
            visited_waypoints: Nx3 array with waypoints that has been visited
            iter (bool, optional): Integer for random seed. Defaults to False.

        Returns:
            A [x,y,z] position of an unvisited point.
        """
        uncovered_coverable_points_idx = self.uncovered_coverable_points_idx

        if iter is not False:
            np.random.seed(20 * iter)

        if ignore_list is not None:
            uncovered_coverable_points_idx = self.delete_values(
                uncovered_coverable_points_idx, ignore_list)
        while len(uncovered_coverable_points_idx
                  ) and not self.time_limit_reached():
            random_idx = np.random.choice(len(uncovered_coverable_points_idx),
                                          1,
                                          replace=False)[0]
            random_uncovered_coverable_point_idx = uncovered_coverable_points_idx[
                random_idx]
            random_uncovered_coverable_point = self.coverable_pcd.points[
                random_uncovered_coverable_point_idx]

            closest_traversable_point = self.traversable_pcd.find_k_nearest(
                random_uncovered_coverable_point, 1)[0]
            if self.has_been_visited(closest_traversable_point,
                                     self.visited_threshold,
                                     self.visited_waypoints):
                close_coverable_points_idx = self.tmp_coverable_pcd.points_idx_in_radius(
                    random_uncovered_coverable_point, ROBOT_RADIUS)
                self.uncovered_coverable_points_idx = self.delete_values(
                    self.uncovered_coverable_points_idx,
                    close_coverable_points_idx)
                #self.print("Has been visited. Removing " + str(len(close_coverable_points_idx)))
                closest_not_visited = self.find_closest_traversable(
                    closest_traversable_point, self.step_size,
                    self.visited_threshold, self.visited_waypoints,
                    self.step_size * 10)
                if closest_not_visited is False:
                    #self.print("BFS could not find an unvisited close")
                    continue
                return closest_not_visited

                continue

            if not self.accessible(random_uncovered_coverable_point,
                                   self.visited_waypoints):
                close_coverable_points_idx = self.tmp_coverable_pcd.points_idx_in_radius(
                    random_uncovered_coverable_point, ROBOT_RADIUS)
                self.uncovered_coverable_points_idx = self.delete_values(
                    self.uncovered_coverable_points_idx,
                    close_coverable_points_idx)
                #self.print("Inaccessible. Removing " + str(len(close_coverable_points_idx)))
                continue

            break

        if len(uncovered_coverable_points_idx
               ) and not self.time_limit_reached():
            return closest_traversable_point

        return False

    def delete_values(self, array, values):
        ''' Removes specific values from an array with unique values
        Args:
            array: NumPy array with unique values to remove values from
            values: NumPy array with values that should be removed.
        '''
        return array[np.isin(array, values, assume_unique=True, invert=True)]

    def delete_values_not_unique(self, array, values):
        ''' Removes specific values from an array
        Args:
            array: NumPy array to remove values from
            values: NumPy array with values that should be removed.
        '''
        return array[np.isin(array, values, invert=True)]