def main_2d(list_file, name_file, exon_type, output, seddb, fasterdb, fig_nums=("2.1D", "2.2D")): """ Create the figure 2.1D and 2.2D of the article with a given list of exons. :param list_file: (list of str) list of exons files in the form \ of GC_rich_exon file. :param name_file: (list of str) the name of each files of exons \ given in ``list_file`` :param exon_type: (str) the control exons :param output: (str) folder where the result will be created :param seddb: (str) path to sed database :param fasterdb: (str) path to fasterdb database :param fig_nums: (list of str) list of figure names :return: """ exon_class.set_debug(0) list_file.append(None) name_file.append(exon_type) ctrl_output = os.path.realpath(os.path.dirname(__file__)).replace( "src/minimum_free_energy", "result/minimum_free_energy/") if not os.path.isdir(ctrl_output): os.mkdir(ctrl_output) ctrl_dir = os.path.realpath(os.path.dirname(__file__)) + \ "/control_dictionaries/" sys.path.insert(0, ctrl_dir) cnx = sqlite3.connect(fasterdb) cnx_sed = sqlite3.connect(seddb) type_analysis = "exon" mfe_3ss_score = [] mfe_5ss_score = [] for i in range(len(name_file)): if name_file[i] != exon_type: exon_list = extract_data(cnx, cnx_sed, list_file, name_file, i) mfe_3ss, mfe_5ss = get_mfe_score_list(ctrl_output, exon_list, name_file[i]) mfe_3ss_score.append(mfe_3ss) mfe_5ss_score.append(mfe_5ss) else: mod = __import__("%s_mfe" % exon_type) mfe_3ss_score.append(mod.mfe_3ss) mfe_5ss_score.append(mod.mfe_5ss) create_figure(mfe_5ss_score, name_file, output, "down", "5SS", type_analysis, fig_nums[0]) dataframe_creator(mfe_5ss_score, name_file, output, "down", "5SS", type_analysis, fig_nums[0]) create_figure(mfe_3ss_score, name_file, output, "down", "3SS", type_analysis, fig_nums[1]) dataframe_creator(mfe_3ss_score, name_file, output, "down", "3SS", type_analysis, fig_nums[1]) cnx.close() cnx_sed.close()
def control_dictionaries_creator(): """ Create the control dictionary containing the values corresponding to the score of bp and ppt for every control exons """ exon_class.set_debug(0) dir_path = os.path.dirname(os.path.realpath(__file__)) fasterdb = os.path.dirname(os.path.realpath(__file__)).replace( "src/minimum_free_energy", "data/fasterDB_lite.db") seddb = os.path.dirname(os.path.realpath(__file__)).replace( "src/minimum_free_energy", "data/sed.db") ctrl_dir = dir_path + "/control_dictionaries/" cnx = sqlite3.connect(fasterdb) cnx_sed = sqlite3.connect(seddb) if not os.path.isdir(ctrl_dir): os.mkdir(ctrl_dir) exon_type = "CCE" exon2remove = union_dataset_function.get_exon_regulated_by_sf( cnx_sed, "down") ctrl_exon_list = get_control_exon_information(cnx, exon_type, exon2remove) print("retrieving upstream intron sequence") list_exon = [ exon_class.ExonClass(cnx, exon[0], exon[1], exon[2]) for exon in ctrl_exon_list ] print("calculating mfe") mfe_list_3ss, mfe_list_5ss = function.mfe_calculator(list_exon) cur_file = open(ctrl_dir + exon_type + "_mfe.py", "w") cur_file.write("mfe_3ss=" + str(mfe_list_3ss) + "\n") cur_file.write("mfe_5ss=" + str(mfe_list_5ss) + "\n") cur_file.close()
def main(): exon_class.set_debug(0) exon_type = "CCE" ctrl_output = os.path.realpath(os.path.dirname(__file__)).replace( "src/minimum_free_energy", "result/minimum_free_energy/") output = os.path.realpath(os.path.dirname(__file__)).replace( "src/minimum_free_energy", "result/minimum_free_energy/") file_dir = os.path.realpath(os.path.dirname(__file__)).replace( "src/minimum_free_energy", "result/") if not os.path.isdir(ctrl_output): os.mkdir(ctrl_output) if not os.path.isdir(output): os.mkdir(output) ctrl_dir = os.path.realpath( os.path.dirname(__file__)) + "/control_dictionaries/" sys.path.insert(0, ctrl_dir) fasterdb = os.path.realpath(os.path.dirname(__file__)).replace( "src/minimum_free_energy", "data/fasterDB_lite.db") seddb = os.path.realpath(os.path.dirname(__file__)).replace( "src/minimum_free_energy", "data/sed.db") cnx = sqlite3.connect(fasterdb) cnx_sed = sqlite3.connect(seddb) type_factors = ["exon", "spliceosome"] for type_analysis in type_factors: name_file, list_file = initiate_list_of_factor(file_dir, exon_type, type_analysis) mfe_3ss_score = [] mfe_5ss_score = [] for i in range(len(name_file)): if name_file[i] != exon_type: exon_list = extract_data(cnx, cnx_sed, list_file, name_file, i) mfe_3ss, mfe_5ss = get_mfe_score_list(ctrl_output, exon_list, name_file[i]) mfe_3ss_score.append(mfe_3ss) mfe_5ss_score.append(mfe_5ss) else: mod = __import__("%s_mfe" % exon_type) mfe_3ss_score.append(mod.mfe_3ss) mfe_5ss_score.append(mod.mfe_5ss) create_figure(mfe_3ss_score, name_file, output, "down", "3SS", type_analysis) dataframe_creator(mfe_3ss_score, name_file, output, "down", "3SS", type_analysis) # create_figure_error_bar(mfe_3ss_score, name_file, output, "down", "3SS", type_analysis) # write_proportion_pvalues(mfe_3ss_score, name_file, output, "3SS", type_analysis) create_figure(mfe_5ss_score, name_file, output, "down", "5SS", type_analysis) dataframe_creator(mfe_5ss_score, name_file, output, "down", "5SS", type_analysis)
def main(exon_file, name_table, list_sf, sed, fasterdb, output, ss="5'ss"): """ Create a table showing for the exon commons in exon_files files \ their surrounding introns length and their MFE at their 5'ss. :param exon_file: (str) a file containing gc/at exons :param name_table: (str) the name of the resulting table :param list_sf: (List(vtype=str)) list of sf name :param sed: (str) path to sed database :param fasterdb: (str) path to fasterdb database :param output: (str) file were the output will be created :param ss: (str) the splicing site of interest """ sf_names = "_".join([name_table] + list_sf) exon_class.set_debug(1) exon_class_bp.set_debug(debug=1) cnx_sed = sqlite3.connect(sed) cnx_fasterdb = sqlite3.connect(fasterdb) exon_list = [] print("Getting exon from file") exon_list.append(get_exon(exon_file)) print("Getting regulated exons") for sf in list_sf: tmp = udf.get_every_events_4_a_sl(cnx_sed, sf, "down") tmp = [[int(v[0]), int(v[1])] for v in tmp] exon_list.append(tmp) print("\t%s : %s down-regulated exons" % (sf, len(tmp))) new_exon_list = reduce(get_union_exon, exon_list) print("Commons exons : %s" % len(new_exon_list)) print("Getting commons exons data !") df = get_exon_data(cnx_sed, new_exon_list, ss) if ss == "5'ss": noutput = output + "/rnafold_" + sf_names + "_commons_down_exons/" print("Computing MFE") df = computing_mfe(cnx_fasterdb, df, noutput) else: # Code to compute number of good branch point print("Computing Good branch point") nexon_list = df[["gene_name", "gene_id", "pos"]].values df2 = svm_bp_finder_launcher(cnx_fasterdb, nexon_list, output) print(df2.head()) print(df.head()) df = pd.merge(df, df2, how="right", on=["gene_id", "pos"]) print("Writing results !") df.to_csv("%s/%s_commons_down_exons.csv" % (output, sf_names), sep="\t", index=False)
def control_dictionaries_creator(): """ Create the control dictionary containing the values corresponding to the score of bp and ppt for every control exons """ exon_class.set_debug(0) dir_path = os.path.dirname(os.path.realpath(__file__)) fasterdb = os.path.dirname(os.path.realpath(__file__)).replace( "src", "data/fasterDB_lite.db") seddb = os.path.dirname(os.path.realpath(__file__)).replace( "src", "data/sed.db") ctrl_dir = dir_path + "/control_dictionaries/" cnx = sqlite3.connect(fasterdb) cnx_sed = sqlite3.connect(seddb) if not os.path.isdir(ctrl_dir): os.mkdir(ctrl_dir) exon_type = "CCE" sizes = [100, 25, 50, 35] exon2remove = union_dataset_function.get_exon_regulated_by_sf( cnx_sed, "down") ctrl_exon_list = get_control_exon_information(cnx, exon_type, exon2remove, "down") for size in sizes: print("size : %s" % size) print("retrieving upstream intron sequence") list_exon = [ exon_class.ExonClass(cnx, exon[0], exon[1], exon[2]) for exon in ctrl_exon_list ] print("calculating bp and ppt score") bp_score_list, ppt_score_list, nb_bp_list, nb_good_bp_list, \ sequence_list, ag_count_list, hbound_list = function.bp_ppt_calculator(list_exon, size) cur_file = open( ctrl_dir + exon_type + "_" + str(size) + "_bp_ppt_score.py", "w") cur_file.write("bp_score=" + str(bp_score_list) + "\n") cur_file.write("ppt_score=" + str(ppt_score_list) + "\n") cur_file.write("nb_bp=" + str(nb_bp_list) + "\n") cur_file.write("nb_good_bp=" + str(nb_good_bp_list) + "\n") cur_file.write("bp_seq=" + str(sequence_list) + "\n") cur_file.write("ag_count=" + str(ag_count_list) + "\n") cur_file.write("hbound=" + str(hbound_list) + "\n") cur_file.close()
def get_exon_info(cnx, info_list, debug): """ Get every information we need on an exon :param debug: (int) 0 no debug, 1 debug mode :param cnx: (sqlite3 object) return all the information we need to connect to FasterDB lite :param info_list: (list of list of string and int and int) each sublist contains \ a string : gene_symbol and 2 int : the gene_id and the exobn position on gene respectively :return: (a list of ExonClass object) list of exons """ print("Getting exons information !") exon_list = [] exon_class.set_debug(debug) count = 0 ll = str(len(info_list)) for exon_info in info_list: exon_list.append(exon_class.ExonClass(cnx, exon_info[0], exon_info[1], exon_info[2])) count += 1 percent = round(float(count) / len(info_list) * 100, 1) sys.stdout.write("Progression : " + str(count) + " / " + ll + " - " + str(percent) + " %\r") sys.stdout.flush() return exon_list
import function import function_mfe import exon_class import exon_class_mfe import statistical_analysis import rpy2.robjects as robj from rpy2.robjects.packages import importr import rpy2.robjects.vectors as v import pandas as pd nt_dic = {"A": 0, "C": 1, "G": 2, "T": 3, "S": 4, "W": 5, "R": 6, "Y": 7} dnt_dic = {"AA": 0, "AC": 1, "AG": 2, "AT": 3, "CA": 4, "CC": 5, "CG": 6, "CT": 7, "GA": 8, "GC": 9, "GG": 10, "GT": 11, "TA": 12, "TC": 13, "TG": 14, "TT": 15} log_columns = ["nb_intron_gene", "downstream_intron_size", "upstream_intron_size", "median_flanking_intron_size", "min_flanking_intron_size", "exon_size"] exon_class.set_debug(0) exon_class_mfe.set_debug(0) size_bp_up_seq = 100 output_bp = "/".join(os.path.realpath(__file__).split("/")[:-2]) + "/result/bp_files/" # Functions def connexion(seddb): """ Connexion to SED database. :param seddb: ((string) path to sed database :return: (sqlite3 connection object) allow connexion to sed database """ return sqlite3.connect(seddb)