Пример #1
0
def gp_fit(t, y, yerr, t_grid, integrated=False, exp_time=60.):
    # optimize kernel hyperparameters and return fit + predictions
    with pm.Model() as model:
        logS0 = pm.Normal("logS0", mu=0.4, sd=5.0, testval=np.log(np.var(y)))
        logw0 = pm.Normal("logw0", mu=-3.9, sd=0.1)
        logQ = pm.Normal("logQ", mu=3.5, sd=5.0)

        # Set up the kernel and GP
        kernel = terms.SHOTerm(log_S0=logS0, log_w0=logw0, log_Q=logQ)
        if integrated:
            kernel_int = terms.IntegratedTerm(kernel, exp_time)
            gp = GP(kernel_int, t, yerr**2)
        else:
            gp = GP(kernel, t, yerr**2)

        # Add a custom "potential" (log probability function) with the GP likelihood
        pm.Potential("gp", gp.log_likelihood(y))

    with model:
        map_soln = xo.optimize(start=model.test_point)
        mu, var = xo.eval_in_model(gp.predict(t_grid, return_var=True),
                                   map_soln)
        sd = np.sqrt(var)
        y_pred = xo.eval_in_model(gp.predict(t), map_soln)

    return map_soln, mu, sd, y_pred
Пример #2
0
def test_broadcast_dim():
    logS0 = tt.scalar()
    logw0 = tt.scalar()
    logQ = tt.scalar()
    logS0.tag.test_value = -5.0
    logw0.tag.test_value = -2.0
    logQ.tag.test_value = 1.0
    kernel = terms.SHOTerm(S0=tt.exp(logS0), w0=tt.exp(logw0), Q=tt.exp(logQ))

    x = tt.vector()
    y = tt.vector()
    diag = tt.vector()
    x.tag.test_value = np.zeros(2)
    y.tag.test_value = np.zeros(2)
    diag.tag.test_value = np.ones(2)
    gp = GP(kernel, x, diag, J=2)
    loglike = gp.log_likelihood(y)

    args = [logS0, logw0, logQ, x, y, diag]
    grad = theano.function(args, theano.grad(loglike, args))

    np.random.seed(42)
    N = 50
    x = np.sort(10 * np.random.rand(N))
    y = np.sin(x)
    diag = np.random.rand(N)
    grad(-5.0, -2.0, 1.0, x, y, diag)
Пример #3
0
def test_sho_reparam(seed=6083):
    S0 = 10.0
    w0 = 0.5
    Q = 3.2
    kernel1 = terms.SHOTerm(S0=S0, w0=w0, Q=Q)
    kernel2 = terms.SHOTerm(Sw4=S0 * w0**4, w0=w0, Q=Q)
    func1 = theano.function([], kernel1.coefficients)
    func2 = theano.function([], kernel2.coefficients)
    for a, b in zip(func1(), func2()):
        assert np.allclose(a, b)

    kernel2 = terms.SHOTerm(log_Sw4=np.log(S0) + 4 * np.log(w0), w0=w0, Q=Q)
    func2 = theano.function([], kernel2.coefficients)
    for a, b in zip(func1(), func2()):
        assert np.allclose(a, b)

    Q = 0.1
    kernel1 = terms.SHOTerm(S0=S0, w0=w0, Q=Q)
    kernel2 = terms.SHOTerm(Sw4=S0 * w0**4, w0=w0, Q=Q)
    func1 = theano.function([], kernel1.coefficients)
    func2 = theano.function([], kernel2.coefficients)
    for a, b in zip(func1(), func2()):
        assert np.allclose(a, b)

    kernel2 = terms.SHOTerm(log_Sw4=np.log(S0) + 4 * np.log(w0), w0=w0, Q=Q)
    func2 = theano.function([], kernel2.coefficients)
    for a, b in zip(func1(), func2()):
        assert np.allclose(a, b)
Пример #4
0
def test_fortran_order(seed=5091986):
    np.random.seed(seed)

    kernel = terms.SHOTerm(log_S0=0.1, log_Q=1.0, log_w0=0.5)

    x = np.sort(np.random.uniform(0, 100, 100))
    y = np.sin(x)
    yerr = np.random.uniform(0.1, 0.5, len(x))
    diag = yerr**2

    gp = GP(kernel, x, diag)
    loglike = gp.log_likelihood(y).eval()
    loglike_f = gp.log_likelihood(np.asfortranarray(y)).eval()
    assert np.allclose(loglike, loglike_f)
Пример #5
0
def multi_gp_predict(t, y, yerr, t_grid, integrated=False, exp_time=60.):
    # this code is GARBAGE. but in principle does gp_predict() for a full comb of modes.
    a_max = 0.55  # amplitude of central mode in m/s
    nu_max = 3.1e-3  # peak frequency in Hz
    c_env = 0.331e-3  # envelope width in Hz
    delta_nu = 0.00013  # Hz
    gamma = 1. / (2 * 24. * 60. * 60.)  # s^-1 ; 2-day damping timescale
    freq_grid = np.arange(nu_max - 0.001, nu_max + 0.001,
                          delta_nu)  # magic numbers
    amp_grid = a_max**2 * np.exp(-(freq_grid - nu_max)**2 /
                                 (2. * c_env**2))  # amplitudes in m/s
    driving_amp_grid = np.sqrt(amp_grid * gamma * dt)
    log_S0_grid = [
        np.log(d**2 / (dt * o)) for o, d in zip(omega_grid, driving_amp_grid)
    ]
    with pm.Model() as model:
        kernel = None
        for o, lS in zip(omega_grid, log_S0_grid):
            if kernel is None:
                kernel = terms.SHOTerm(log_S0=lS,
                                       log_w0=np.log(o),
                                       log_Q=np.log(o / gamma))
            else:
                kernel += terms.SHOTerm(log_S0=lS,
                                        log_w0=np.log(o),
                                        log_Q=np.log(o / gamma))
        if integrated:
            kernel_int = terms.IntegratedTerm(kernel, exp_time)
            gp = GP(kernel_int, t, yerr**2)
        else:
            gp = GP(kernel, t, yerr**2)
        gp.condition(y)
        mu, var = xo.eval_in_model(gp.predict(t_grid, return_var=True))
        sd = np.sqrt(var)
        y_pred = xo.eval_in_model(gp.predict(t))
    return y_pred, mu, sd
Пример #6
0
def test_integrated_diag(seed=1234):
    np.random.seed(seed)
    x = np.sort(np.random.uniform(0, 100, 100))
    dt = 0.4 * np.min(np.diff(x))
    yerr = np.random.uniform(0.1, 0.5, len(x))
    diag = yerr**2

    kernel = terms.SHOTerm(log_S0=0.1, log_Q=1.0, log_w0=0.5)
    kernel += terms.RealTerm(log_a=0.1, log_c=0.4)

    a = kernel.get_celerite_matrices(x, diag)[0].eval()
    k0 = kernel.value(tt.zeros(1)).eval()
    assert np.allclose(a, k0 + diag)

    kernel = terms.IntegratedTerm(kernel, dt)
    a = kernel.get_celerite_matrices(x, diag)[0].eval()
    k0 = kernel.value(tt.zeros(1)).eval()
    assert np.allclose(a, k0 + diag)
Пример #7
0
def _get_theano_kernel(celerite_kernel):
    import celerite.terms as cterms

    if isinstance(celerite_kernel, cterms.TermSum):
        result = _get_theano_kernel(celerite_kernel.terms[0])
        for k in celerite_kernel.terms[1:]:
            result += _get_theano_kernel(k)
        return result
    elif isinstance(celerite_kernel, cterms.TermProduct):
        return _get_theano_kernel(celerite_kernel.k1) * _get_theano_kernel(
            celerite_kernel.k2)
    elif isinstance(celerite_kernel, cterms.RealTerm):
        return terms.RealTerm(log_a=celerite_kernel.log_a,
                              log_c=celerite_kernel.log_c)
    elif isinstance(celerite_kernel, cterms.ComplexTerm):
        if not celerite_kernel.fit_b:
            return terms.ComplexTerm(
                log_a=celerite_kernel.log_a,
                b=0.0,
                log_c=celerite_kernel.log_c,
                log_d=celerite_kernel.log_d,
            )
        return terms.ComplexTerm(
            log_a=celerite_kernel.log_a,
            log_b=celerite_kernel.log_b,
            log_c=celerite_kernel.log_c,
            log_d=celerite_kernel.log_d,
        )
    elif isinstance(celerite_kernel, cterms.SHOTerm):
        return terms.SHOTerm(
            log_S0=celerite_kernel.log_S0,
            log_Q=celerite_kernel.log_Q,
            log_w0=celerite_kernel.log_omega0,
        )
    elif isinstance(celerite_kernel, cterms.Matern32Term):
        return terms.Matern32Term(
            log_sigma=celerite_kernel.log_sigma,
            log_rho=celerite_kernel.log_rho,
        )
    raise NotImplementedError()
Пример #8
0
def gp_predict(t,
               y,
               yerr,
               t_grid,
               logS0=0.4,
               logw0=-3.9,
               logQ=3.5,
               integrated=False,
               exp_time=60.):
    # take kernel hyperparameters as fixed inputs, train + predict
    with pm.Model() as model:
        kernel = terms.SHOTerm(log_S0=logS0, log_w0=logw0, log_Q=logQ)
        if integrated:
            kernel_int = terms.IntegratedTerm(kernel, exp_time)
            gp = GP(kernel_int, t, yerr**2)
        else:
            gp = GP(kernel, t, yerr**2)
        gp.condition(y)
        mu, var = xo.eval_in_model(gp.predict(t_grid, return_var=True))
        sd = np.sqrt(var)
        y_pred = xo.eval_in_model(gp.predict(t))

    return y_pred, mu, sd
Пример #9
0
    with pm.Model() as model:

        mean = pm.Normal("mean", mu=0.0, sigma=1.0)
        S1 = pm.InverseGamma(
            "S1", **estimate_inverse_gamma_parameters(0.5**2, 10.0**2))
        S2 = pm.InverseGamma(
            "S2", **estimate_inverse_gamma_parameters(0.25**2, 1.0**2))
        w1 = pm.InverseGamma(
            "w1", **estimate_inverse_gamma_parameters(2 * np.pi / 10.0, np.pi))
        w2 = pm.InverseGamma(
            "w2", **estimate_inverse_gamma_parameters(0.5 * np.pi, 2 * np.pi))
        log_Q = pm.Uniform("log_Q", lower=np.log(2), upper=np.log(10))

        # Set up the kernel an GP
        kernel = terms.SHOTerm(S_tot=S1, w0=w1, Q=1.0 / np.sqrt(2))
        kernel += terms.SHOTerm(S_tot=S2, w0=w2, log_Q=log_Q)
        gp = GP(kernel, t, yerr**2, mean=mean)

        # Condition the GP on the observations and add the marginal likelihood
        # to the model
        gp.marginal("gp", observed=y)

    with model:
        map_soln = xo.optimize(start=model.test_point)

    with model:
        mu, var = xo.eval_in_model(
            gp.predict(true_t, return_var=True, predict_mean=True), map_soln)

    # Plot the prediction and the 1-sigma uncertainty
Пример #10
0
def build_model(mask=None, start=None):

    with pm.Model() as model:

        # The baseline flux
        mean = pm.Normal("mean", mu=0.0, sd=0.00001)

        # The time of a reference transit for each planet
        t0 = pm.Normal("t0", mu=t0s, sd=1.0, shape=1)

        # The log period; also tracking the period itself
        logP = pm.Normal("logP", mu=np.log(periods), sd=0.01, shape=1)

        rho_star = pm.Normal("rho_star", mu=0.14, sd=0.01, shape=1)
        r_star = pm.Normal("r_star", mu=2.7, sd=0.01, shape=1)

        period = pm.Deterministic("period", pm.math.exp(logP))

        # The Kipping (2013) parameterization for quadratic limb darkening paramters
        u = xo.distributions.QuadLimbDark("u", testval=np.array([0.3, 0.2]))

        r = pm.Uniform("r", lower=0.01, upper=0.3, shape=1, testval=0.15)

        b = xo.distributions.ImpactParameter("b", ror=r, shape=1, testval=0.5)

        # Transit jitter & GP parameters
        logs2 = pm.Normal("logs2", mu=np.log(np.var(y)), sd=10)
        logw0 = pm.Normal("logw0", mu=0, sd=10)
        logSw4 = pm.Normal("logSw4", mu=np.log(np.var(y)), sd=10)

        # Set up a Keplerian orbit for the planets
        orbit = xo.orbits.KeplerianOrbit(period=period,
                                         t0=t0,
                                         b=b,
                                         rho_star=rho_star,
                                         r_star=r_star)

        # Compute the model light curve using starry
        light_curves = xo.LimbDarkLightCurve(u).get_light_curve(orbit=orbit,
                                                                r=r,
                                                                t=t)
        light_curve = pm.math.sum(light_curves, axis=-1) + mean

        # Here we track the value of the model light curve for plotting
        # purposes
        pm.Deterministic("light_curves", light_curves)

        S1 = pm.InverseGamma(
            "S1", **estimate_inverse_gamma_parameters(0.5**2, 10.0**2))
        S2 = pm.InverseGamma(
            "S2", **estimate_inverse_gamma_parameters(0.25**2, 1.0**2))
        w1 = pm.InverseGamma(
            "w1", **estimate_inverse_gamma_parameters(2 * np.pi / 10.0, np.pi))
        w2 = pm.InverseGamma(
            "w2", **estimate_inverse_gamma_parameters(0.5 * np.pi, 2 * np.pi))
        log_Q = pm.Uniform("log_Q", lower=np.log(2), upper=np.log(10))

        # Set up the kernel an GP
        kernel = terms.SHOTerm(S_tot=S1, w0=w1, Q=1.0 / np.sqrt(2))
        kernel += terms.SHOTerm(S_tot=S2, w0=w2, log_Q=log_Q)
        gp = GP(kernel, t, yerr**2, mean=mean)

        gp.marginal("gp", observed=y)
        pm.Deterministic("gp_pred", gp.predict())

        # The likelihood function assuming known Gaussian uncertainty
        pm.Normal("obs", mu=light_curve, sd=yerr, observed=y)

        # Fit for the maximum a posteriori parameters given the simuated
        # dataset
        map_soln = xo.optimize(start=model.test_point)

        return model, map_soln
Пример #11
0
    loglike0 = -np.sum(np.log(np.diag(factor[0])))
    loglike0 -= 0.5 * len(x) * np.log(2 * np.pi)
    loglike0 -= 0.5 * np.dot(y, cho_solve(factor, y))

    assert np.allclose(loglike, loglike0)


@pytest.mark.parametrize(
    "kernel",
    [
        terms.RealTerm(log_a=0.1, log_c=0.5),
        terms.RealTerm(log_a=0.1, log_c=0.5) +
        terms.RealTerm(log_a=-0.1, log_c=0.7),
        terms.ComplexTerm(log_a=0.1, b=0.0, log_c=0.5, log_d=0.1),
        terms.ComplexTerm(log_a=0.1, log_b=-0.2, log_c=0.5, log_d=0.1),
        terms.SHOTerm(log_S0=0.1, log_Q=-1, log_w0=0.5),
        terms.SHOTerm(log_S0=0.1, log_Q=1.0, log_w0=0.5),
        terms.SHOTerm(log_S0=0.1, log_Q=1.0, log_w0=0.5) +
        terms.RealTerm(log_a=0.1, log_c=0.4),
        terms.SHOTerm(log_S0=0.1, log_Q=1.0, log_w0=0.5) *
        terms.RealTerm(log_a=0.1, log_c=0.4),
        terms.Matern32Term(log_sigma=0.1, log_rho=0.4),
    ],
)
def test_integrated(kernel, seed=1234):
    np.random.seed(seed)
    x = np.sort(np.random.uniform(0, 100, 100))
    dt = 0.4 * np.min(np.diff(x))
    y = np.sin(x)
    yerr = np.random.uniform(0.1, 0.5, len(x))
    diag = yerr**2
def run_gp_single(Sgv, wgv, S1v, w1v, Q1v, opt=opt):

    if (opt == 1):
        print('Running Gp Single Optimiziation', 'Sgv', Sgv, 'wgv', wgv, 'S1v',
              S1v, 'w1v', w1v, 'Q1v', Q1v)
    with pm.Model() as model:

        logs2 = pm.Normal("logs2",
                          mu=2 * np.log(np.mean(yerr)),
                          sigma=100.0,
                          testval=100)

        logSg = pm.Normal("logSg", mu=Sgv, sigma=100.0, testval=Sgv)
        logwg = pm.Normal("logwg", mu=wgv, sigma=100.0, testval=wgv)
        logS1 = pm.Normal("logS1", mu=S1v, sigma=100.0, testval=S1v)
        logw1 = pm.Normal("logw1", mu=w1v, sigma=100.0, testval=w1v)
        logQ1 = pm.Normal("logQ1", mu=Q1v, sigma=100.0, testval=Q1v)

        # Set up the kernel an GP
        bg_kernel = terms.SHOTerm(log_S0=logSg,
                                  log_w0=logwg,
                                  Q=1.0 / np.sqrt(2))
        star_kernel1 = terms.SHOTerm(log_S0=logS1, log_w0=logw1, log_Q=logQ1)
        kernel = star_kernel1 + bg_kernel

        gp = GP(kernel, t, yerr**2 + pm.math.exp(logs2))
        gp_star1 = GP(star_kernel1, t, yerr**2 + pm.math.exp(logs2))
        gp_bg = GP(bg_kernel, t, yerr**2 + pm.math.exp(logs2))

        # Condition the GP on the observations and add the marginal likelihood
        # to the model
        gp.marginal("gp", observed=y)

    with model:
        val = gp.kernel.psd(omega)

        psd_init = xo.eval_in_model(val)

        bg_val = gp_bg.kernel.psd(omega)
        star_val_1 = gp_star1.kernel.psd(omega)

        bg_psd_init = xo.eval_in_model(bg_val)
        star_1_psd_init = xo.eval_in_model(star_val_1)

        #     print('done_init_plot')

        map_soln = model.test_point

        if (opt == 1):
            map_soln = xo.optimize(start=map_soln, vars=[logSg])
            #ask about this, do i need to scale when I show this?
            map_soln = xo.optimize(start=map_soln, vars=[logwg])
            map_soln = xo.optimize(start=map_soln, vars=[logw1])
            map_soln = xo.optimize(start=map_soln, vars=[logS1])
            map_soln = xo.optimize(start=map_soln)

            print(map_soln.values())
            mu, var = xo.eval_in_model(gp.predict(t, return_var=True),
                                       map_soln)

            plt.figure()
            plt.errorbar(t, y, yerr=yerr, fmt=".k", capsize=0, label="data")
            sd = np.sqrt(var)
            art = plt.fill_between(t, mu + sd, mu - sd, color="C1", alpha=0.3)
            art.set_edgecolor("none")
            plt.plot(t, mu, color="C1", label="prediction")

            plt.legend(fontsize=12)
            plt.xlabel("t")
            plt.ylabel("y")
            plt.xlim(0, 10)
            _ = plt.ylim(-2.5, 2.5)

        psd_final = xo.eval_in_model(gp.kernel.psd(omega), map_soln)

        bg_psd_fin = xo.eval_in_model(bg_val, map_soln)
        star_1_psd_fin = xo.eval_in_model(star_val_1, map_soln)
    return psd_init, star_1_psd_init, bg_psd_init, psd_final, star_1_psd_fin, bg_psd_fin, map_soln
def run_gp_binary(Sg, wg, S1, w1, Q1, S2, w2, Q2, opt=opt):
    with pm.Model() as model:

        logs2 = pm.Normal("logs2",
                          mu=2 * np.log(np.mean(yerr)),
                          sigma=100.0,
                          testval=-100)

        mean = pm.Normal("mean", mu=np.mean(y), sigma=1.0)
        logSg = pm.Normal("logSg", mu=0.0, sigma=15.0, testval=Sg)
        logwg = pm.Normal("logwg",
                          mu=0.0,
                          sigma=15.0,
                          testval=wg - np.log(1e6))
        logS1 = pm.Normal("logS1", mu=0.0, sigma=15.0, testval=S1)
        logw1 = pm.Normal("logw1",
                          mu=0.0,
                          sigma=15.0,
                          testval=w1 - np.log(1e6))
        logQ1 = pm.Normal("logQ1", mu=0.0, sigma=15.0, testval=Q1)

        logS2 = pm.Normal("logS2", mu=0.0, sigma=15.0, testval=S2)
        logw2 = pm.Normal("logw2",
                          mu=0.0,
                          sigma=15.0,
                          testval=w2 - np.log(1e6))
        logQ2 = pm.Normal("logQ2", mu=0.0, sigma=15.0, testval=Q2)

        # Set up the kernel an GP
        bg_kernel = terms.SHOTerm(log_S0=logSg,
                                  log_w0=logwg,
                                  Q=1.0 / np.sqrt(2))
        star_kernel1 = terms.SHOTerm(log_S0=logS1, log_w0=logw1, log_Q=logQ1)
        star_kernel2 = terms.SHOTerm(log_S0=logS2, log_w0=logw2, log_Q=logQ2)
        kernel = star_kernel1 + star_kernel2 + bg_kernel

        gp = GP(kernel, t, yerr**2 + pm.math.exp(logs2), mean=mean)
        gp_star1 = GP(star_kernel1, t, yerr**2 + pm.math.exp(logs2), mean=mean)
        gp_bg = GP(bg_kernel, t, yerr**2 + pm.math.exp(logs2), mean=mean)
        gp_star2 = GP(star_kernel2, t, yerr**2 + pm.math.exp(logs2), mean=mean)

        # Condition the GP on the observations and add the marginal likelihood
        # to the model
        gp.marginal("gp", observed=y)

    with model:
        val = gp.kernel.psd(omega)

        psd_init = xo.eval_in_model(val)

        bg_val = gp_bg.kernel.psd(omega)
        star_val_1 = gp_star1.kernel.psd(omega)
        star_val_2 = gp_star2.kernel.psd(omega)

        bg_psd_init = xo.eval_in_model(bg_val)
        star_1_psd_init = xo.eval_in_model(star_val_1)
        star_2_psd_init = xo.eval_in_model(star_val_2)

        #     print('done_init_plot')

        map_soln = model.test_point

        if (opt == 1):
            print('running opt')
            map_soln = xo.optimize(start=map_soln, vars=[logSg])
            #ask about this, do i need to scale when I show this?
            map_soln = xo.optimize(start=map_soln, vars=[logwg])
            #map_soln = xo.optimize(start=map_soln, vars=[logS1,logw1])
            #map_soln = xo.optimize(start=map_soln, vars=[logS2,logw2])

        psd_final = xo.eval_in_model(gp.kernel.psd(omega), map_soln)

        bg_psd_fin = xo.eval_in_model(bg_val, map_soln)
        star_1_psd_fin = xo.eval_in_model(star_val_1, map_soln)
        star_2_psd_fin = xo.eval_in_model(star_val_2, map_soln)
    return psd_init, star_1_psd_init, star_2_psd_init, bg_psd_init, psd_final, star_1_psd_fin, star_2_psd_fin, bg_psd_fin, map_soln
Пример #14
0
# %%
import pymc3 as pm
import theano.tensor as tt
from exoplanet.gp import terms, GP

with pm.Model() as model:

    mean = pm.Normal("mean", mu=0.0, sigma=1.0)
    logS1 = pm.Normal("logS1", mu=0.0, sigma=15.0, testval=np.log(np.var(y)))
    logw1 = pm.Normal("logw1", mu=0.0, sigma=15.0, testval=np.log(3.0))
    logS2 = pm.Normal("logS2", mu=0.0, sigma=15.0, testval=np.log(np.var(y)))
    logw2 = pm.Normal("logw2", mu=0.0, sigma=15.0, testval=np.log(3.0))
    logQ = pm.Normal("logQ", mu=0.0, sigma=15.0, testval=0)

    # Set up the kernel an GP
    kernel = terms.SHOTerm(log_S0=logS1, log_w0=logw1, Q=1.0 / np.sqrt(2))
    kernel += terms.SHOTerm(log_S0=logS2, log_w0=logw2, log_Q=logQ)
    gp = GP(kernel, t, yerr**2, mean=mean)

    # Condition the GP on the observations and add the marginal likelihood
    # to the model
    gp.marginal("gp", observed=y)

# %% [markdown]
# A few comments here:
#
# 1. The `term` interface in *exoplanet* only accepts keyword arguments with names given by the `parameter_names` property of the term. But it will also interpret keyword arguments with the name prefaced by `log_` to be the log of the parameter. For example, in this case, we used `log_S0` as the parameter for each term, but `S0=tt.exp(log_S0)` would have been equivalent. This is useful because many of the parameters are required to be positive so fitting the log of those parameters is often best.
# 2. The third argument to the :class:`exoplanet.gp.GP` constructor should be the *variance* to add along the diagonal, not the standard deviation as in the original [celerite implementation](https://celerite.readthedocs.io).
# 3. Finally, the :class:`exoplanet.gp.GP` constructor takes an optional argument `J` which specifies the width of the problem if it is known at compile time. Just to be confusing, this is actually two times the `J` from [the celerite paper](https://arxiv.org/abs/1703.09710). There are various technical reasons why this is difficult to work out in general and this code will always work if you don't provide a value for `J`, but you can get much better performance (especially for small `J`) if you know what it will be for your problem. In general, most terms cost `J=2` with the exception of a :class:`exoplanet.gp.terms.RealTerm` (which costs `J=1`) and a :class:`exoplanet.gp.terms.RotationTerm` (which costs `J=4`).
#
# To start, let's fit for the maximum a posteriori (MAP) parameters and look the the predictions that those make.