Пример #1
0
def run(config_file):
    """This program is the starting point for every experiment. It pulls together the configuration and all necessary
    experiment classes to load

    """
    config = load_config(config_file)
    config_global = config['global']

    # setup a logger
    logger = setup_logger(config['logger'], name='experiment')

    # we allow to set the random seed in the config file for reproducibility. However, when running on GPU, results
    # will still be nondeterministic (due to nondeterministic behavior of tensorflow)
    if 'random_seed' in config_global:
        seed = config_global['random_seed']
        logger.info('Using fixed random seed'.format(seed))
        np.random.seed(seed)
        tf.set_random_seed(seed)

    with tf.Session(config=sess_config) as sess:
        # We are now fetching all relevant modules. It is strictly required that these module contain a variable named
        # 'component' that points to a class which inherits from experiment.Data, experiment.Experiment,
        # experiment.Trainer or experiment.Evaluator
        data_module = config['data-module']
        model_module = config['model-module']
        training_module = config['training-module']
        evaluation_module = config.get('evaluation-module', None)

        # The modules are now dynamically loaded
        DataClass = importlib.import_module(data_module).component
        ModelClass = importlib.import_module(model_module).component
        TrainingClass = importlib.import_module(training_module).component
        EvaluationClass = importlib.import_module(evaluation_module).component

        # We then wire together all the modules and start training
        data = DataClass(config['data'], config_global, logger)
        model = ModelClass(config['model'], config_global, logger)
        training = TrainingClass(config['training'], config_global, logger)
        evaluation = EvaluationClass(config['evaluation'], config_global,
                                     logger)

        # setup the data (validate, create generators, load data, or else)
        logger.info('Setting up the data')
        data.setup()
        # build the model (e.g. compile it)
        logger.info('Building the model')
        model.build(data, sess)
        # start the training process
        logger.info('Starting the training process')
        training.start(model, data, sess, evaluation)
        training.restore_best_epoch(model, data, sess, evaluation)

        # perform evaluation, if required
        if not config['evaluation'].get('skip', False):
            logger.info('Evaluating')
            evaluation.start(model, data, sess, valid_only=False)
        else:
            logger.info('Skipping evaluation')

        logger.info('DONE')
def run(config_file):
    """This program is the starting point for every experiment. It pulls together the configuration and all necessary
    experiment classes to load

    """
    config = load_config(config_file)
    config_global = config['global']
    logger = logging_utils.setup(config)

    # Allow the gpu to be used in parallel
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.allow_growth = True

    with tf.Session(config=sess_config) as sess:
        # We are now fetching all relevant modules. It is strictly required that these modules contain a variable named
        # 'component' that points to a class which inherits from experiment.Data, experiment.Experiment,
        # experiment.Trainer or experiment.Evaluator
        data_module = config['data-module']
        model_module = config['model-module']
        training_module = config['training-module']
        evaluation_module = config.get('evaluation-module', None)

        # The modules are now dynamically loaded
        DataClass = importlib.import_module(data_module).component
        ModelClass = importlib.import_module(model_module).component
        TrainingClass = importlib.import_module(training_module).component
        EvaluationClass = importlib.import_module(evaluation_module).component

        # We then wire together all the modules and start training
        data = DataClass(config['data'], config_global, logger)
        model = ModelClass(config['model'], config_global, logger)
        training = TrainingClass(config['training'], config_global, logger)
        evaluation = EvaluationClass(config['evaluation'], config_global, logger)

        # setup the data (validate, create generators, load data, or else)
        logger.info('Setting up the data')
        data.setup()
        # build the model (e.g. compile it)
        logger.info('Building the model')
        model.build(data, sess)
        # start the training process
        logger.info('Starting the training process')
        training.start(model, data, sess, evaluation)

        # perform evaluation, if required
        if not config['evaluation'].get('skip', False):
            logger.info('Evaluating')
            evaluation.start(model, data, sess, valid_only=False)
        else:
            logger.info('Skipping evaluation')

        logger.info('DONE')
Пример #3
0
    def load_config_from_file(self):
        '''
        Load experiment configurations from file
        '''
        filename = tk.filedialog.askopenfilename(parent=self.root_view.root)
        if not isinstance(filename, str) or filename == '': return

        try:
            config = load_config(filename)
        except:
            tk.messagebox.showinfo('Error',
                                   'Invalid yaml file',
                                   parent=self.root_view.root)
            return

        self.set_config(config)
Пример #4
0
def run_cmd(config_file, do_test):
    config_eval = load_config(config_file)
    config_experiment = load_config(config_eval['global']['experiment_config'])

    def run():
        """This program is the starting point for evaluations without training"""
        run_name = config_eval.get('run_name', 'undefined name')
        config_eval_global = config_eval['global']
        config_experiment_global = config_experiment['global']

        output_dir = config_eval_global['evaluation_output']
        restore_weights = config_eval_global.get('restore_epoch', 'best')

        if os.path.exists(path.join(output_dir, 'log.txt')):
            with open(path.join(output_dir, 'log.txt'), 'r') as f:
                if 'Results for all datasets in dev' in f.read():
                    return 'exp. already finished'

        if not os.path.exists(output_dir):
            os.mkdir(output_dir)
        write_config(config_eval, output_dir)

        # setup a logger
        logger = setup_logger(config_eval['logger'],
                              output_dir,
                              name='experiment')

        # we allow to set the random seed in the config file for reproducibility. However, when running on GPU, results
        # can still be nondeterministic
        if 'random_seed' in config_experiment_global:
            seed = config_experiment_global['random_seed']
            logger.info('Using fixed random seed'.format(seed))
            np.random.seed(seed)
            tf.set_random_seed(seed)

        multi_data_module_eval = MultiData(config_eval['data'],
                                           config_eval_global, logger)
        for dataset_config in config_eval['data']:
            data_module = dataset_config['data-module']
            splits = dataset_config.get('splits', ['train', 'dev', 'test'])
            DataClass = importlib.import_module(data_module).component
            data = DataClass(dataset_config, config_eval_global, logger)
            multi_data_module_eval.add(data, splits)

        model_module = config_experiment['model-module']
        evaluation_module = config_eval['evaluation-module']

        # The modules are now dynamically loaded
        ModelClass = importlib.import_module(model_module).component
        EvaluationClass = importlib.import_module(evaluation_module).component

        # We then wire together all the modules and start training
        model = ModelClass(config_experiment['model'],
                           config_experiment_global, logger)
        evaluation = EvaluationClass(config_eval['evaluation'],
                                     config_eval_global, logger)

        # setup the data (validate, create generators, load data, or else)
        logger.info('Setting up the data')
        multi_data_module_eval.setup()
        # build the model (e.g. compile it)
        logger.info('Building the model')

        model.set_bert_configs_from_output_folder(
            restore_weights)  # sets necessary huggingface bert restore paths
        model.build(multi_data_module_eval)
        if hasattr(model.bert.config, 'adapter_attention'):
            model.bert.bert.enable_adapters(unfreeze_adapters=True,
                                            unfreeze_attention=True)
        elif hasattr(model.bert.config, 'adapters'):
            model.bert.bert.enable_adapters(unfreeze_adapters=True,
                                            unfreeze_attention=False)

        state = QATrainStatePyTorch(path.join(
            config_experiment_global['output_path'], 'checkpoints'),
                                    less_is_better=False,
                                    logger=logger)
        state.load(model.bert,
                   optimizer=None,
                   weights=restore_weights,
                   strict=False)

        logger.info('Evaluating')
        results = evaluation.start(model,
                                   multi_data_module_eval,
                                   valid_only=not do_test)

        logger.info('DONE')

        return {'run_name': run_name, 'results': results}

    run()
Пример #5
0
def run(config_file):
    """This program is the starting point for every experiment. It pulls together the configuration and all necessary
    experiment classes to load

    """
    config = load_config(config_file)
    config_global = config['global']

    # setup a logger
    logger = logging.getLogger('experiment')
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler_stdout = logging.StreamHandler(sys.stdout)
    handler_stdout.setLevel(config['logger']['level'])
    handler_stdout.setFormatter(formatter)
    logger.addHandler(handler_stdout)

    if 'path' in config['logger']:
        handler_file = logging.FileHandler(config['logger']['path'])
        handler_file.setLevel(config['logger']['level'])
        handler_file.setFormatter(formatter)
        logger.addHandler(handler_file)

    logger.setLevel(config['logger']['level'])

    # Allow the gpu to be used in parallel
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.allow_growth = True
    if 'max_threads' in config_global:
        sess_config.intra_op_parallelism_threads = config_global['max_threads']

    np.random.seed(1)
    tf.set_random_seed(1)

    with tf.Session(config=sess_config) as sess:
        # We are now fetching all relevant modules. It is strictly required that these module contain a variable named
        # 'component' that points to a class which inherits from experiment.Data, experiment.Experiment,
        # experiment.Trainer or experiment.Evaluator
        data_module = config['data-module']
        model_module = config['model-module']
        training_module = config['training-module']
        evaluation_module = config.get('evaluation-module', None)

        # The modules are now dynamically loaded
        DataClass = importlib.import_module(data_module).component
        ModelClass = importlib.import_module(model_module).component
        TrainingClass = importlib.import_module(training_module).component
        EvaluationClass = importlib.import_module(
            evaluation_module).component if evaluation_module else None

        # We then wire together all the modules and start training
        data = DataClass(config['data'], config_global, logger)
        model = ModelClass(config['model'], config_global, logger)
        training = TrainingClass(config['training'], config_global, logger)

        # setup the data (validate, create generators, load data, or else)
        logger.info('Setting up the data')
        data.setup()
        # build the model (e.g. compile it)
        logger.info('Building the model')
        model.build(data, sess)
        # start the training process
        logger.info('Starting the training process')
        training.start(model, data, sess)

        # perform evaluation, if required
        if EvaluationClass:
            logger.info('Evaluating')
            evaluation = EvaluationClass(config['evaluation'], config_global,
                                         logger)
            evaluation.start(model, data, sess)
        else:
            logger.info('No evaluation')

        logger.info('DONE')
Пример #6
0
def run(config_file):
    """This program is the starting point for every experiment. It pulls together the configuration and all necessary
    experiment classes to load

    """
    config = load_config(config_file)
    config_global = config['global']
    logger = logging_utils.setup(config)

    # Allow the gpu to be used in parallel
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.allow_growth = True

    # We are now fetching all relevant modules. It is strictly required that these modules contain a variable
    # named 'component' that points to a class which inherits from experiment.Data, experiment.Experiment,
    # experiment.Trainer or experiment.Evaluator
    data_module = config['data-module']
    model_module = config['model-module']
    training_module = config['training-module']
    evaluation_module = config.get('evaluation-module', None)

    # The modules are now dynamically loaded
    DataClass = importlib.import_module(data_module).component
    ModelClass = importlib.import_module(model_module).component
    TrainingClass = importlib.import_module(training_module).component
    EvaluationClass = importlib.import_module(evaluation_module).component

    data = DataClass(config['data'], config_global, logger)
    # setup the data (validate, create generators, load data, or else)
    logger.info('Setting up the data')
    data.setup()

    results = defaultdict(lambda: list())
    n_repetitions = config.get('repetitions', 1)
    for i in range(n_repetitions):
        tf.reset_default_graph()
        logger.info('-' * 20)
        logger.info('Repetition {}'.format(i))

        with tf.Session(config=sess_config) as sess:
            # We then wire together all the modules and start training
            model = ModelClass(config['model'], config_global, logger)
            training = TrainingClass(config['training'], config_global, logger)
            evaluation = EvaluationClass(config['evaluation'], config_global,
                                         logger)

            # build the model (e.g. compile it)
            logger.info('Building the model')
            model.build(data, sess)
            # start the training process
            logger.info('Starting the training process')
            training.start(model, data, sess, evaluation)

            # perform evaluation
            logger.info('Evaluating')
            result = evaluation.start(model, data, sess, valid_only=False)
            for k, v in result.items():
                results[k].append(v)

    logger.info('DONE')
    logger.info('Averaged results over {} runs:'.format(n_repetitions))
    for key, values in results.items():
        logger.info('AVG result over {} runs: {}={}'.format(
            n_repetitions, key, np.mean(values)))
Пример #7
0
def run(config_file):
    """This program is the starting point for every experiment. It pulls together the configuration and all necessary
    experiment classes to load

    """
    config = load_config(config_file)
    config_global = config['global']
    logger = logging_utils.setup(config)
    data_writer = DataWriter(config['report'], logger)
    data_writer.add_task('ArgMinPE')

    data_module = config['data-module']
    stl_model_module = config['stl-model-module']
    stl_training_module = config['stl-training-module']
    stl_evaluation_module = config.get('stl-evaluation-module', None)
    mtl_model_module = config['mtl-model-module']
    mtl_training_module = config['mtl-training-module']
    mtl_evaluation_module = config.get('mtl-evaluation-module', None)

    # The modules are now dynamically loaded
    DataClass = importlib.import_module(data_module).component
    STLModelClass = importlib.import_module(stl_model_module).component
    STLTrainingClass = importlib.import_module(stl_training_module).component
    STLEvaluationClass = importlib.import_module(stl_evaluation_module).component
    MTLModelClass = importlib.import_module(mtl_model_module).component
    MTLTrainingClass = importlib.import_module(mtl_training_module).component
    MTLEvaluationClass = importlib.import_module(mtl_evaluation_module).component

    data = DataClass(config['data'], config_global, logger)
    stl_evaluation = STLEvaluationClass(config['evaluation'], config_global, logger)
    mtl_evaluation = MTLEvaluationClass(config['evaluation'], config_global, logger)

    # setup the data (validate, create generators, load data, ...)
    logger.info('Setting up the data')
    data.setup()

    results = OrderedDict()
    for i in range(config['repetitions']):
        tf.reset_default_graph()
        logger.info('Repetition {}'.format(i))
        with tf.Session(config=sess_config) as sess:
            model = STLModelClass(config['model'], config_global, logger)
            training = STLTrainingClass(config['training'], config_global, logger)
            logger.info('Building the model')
            model.build(data, sess)
            # start the training process
            logger.info('Starting the training process')
            training.start(model, data, sess, stl_evaluation)
            result = stl_evaluation.start(model, data, sess, valid_only=False)
            logger.info('Finished training the projection model with dev={}, test(en)={}, test(de)={}'.format(
                result['valid'],
                result['test-en'],
                result['test-de']
            ))
            if i == 0:
                results['plain-transfer'] = {'dev': [], 'test-en': [], 'test-de': []}
            results['plain-transfer']['dev'].append(result['valid'])
            results['plain-transfer']['test-en'].append(result['test-en'])
            results['plain-transfer']['test-de'].append(result['test-de'])

            return
            logger.info('Labeling the sentences of the parallel corpus...')
            labeled_parallel_data_en, labeled_parallel_data_de = [], []
            lbl_count_en, lbl_count_de = defaultdict(lambda: 0), defaultdict(lambda: 0)
            for ((en, de),(en_vec, de_vec)) in zip(data.parallel_sentences, data.parallel_sentences_vectors):
                p, = sess.run([model.predict], feed_dict={
                    model.input_sentence: [en_vec, de_vec],
                    model.dropout_keep_prob: 1.0
                })

                cls_en = data.classes[np.argmax(p[0])]
                lbl_count_en[cls_en] += 1
                labeled_parallel_data_en.append((en, de, p[0]))

                cls_de = data.classes[np.argmax(p[1])]
                lbl_count_de[cls_de] += 1
                labeled_parallel_data_de.append((en, de, p[1]))

            logger.info('Inferred labels (en): {}'.format(
                ' '.join(['{}={}'.format(k, v) for k, v in lbl_count_en.items()])
            ))
            logger.info('Inferred labels (de): {}'.format(
                ' '.join(['{}={}'.format(k, v) for k, v in lbl_count_de.items()])
            ))

        # MTL projection
        for mode in [#'gold & projected_de', 'labeled_en & projected_de', 'gold+labeled_en & projected_de',
                     'gold & labeled_de',
                     # 'gold+projected_en & labeled_de',
                     #'gold+labeled_en+projected_en & projected_de+labeled_de',
                     'gold+labeled_en & labeled_de+projected_de']:
            logger.info('Now training MTL, mode={}'.format(mode))
            tf.reset_default_graph()
            with tf.Session(config=sess_config) as sess:
                merged_data = data.get_MTL(labeled_parallel_data_en, labeled_parallel_data_de, mode=mode)
                model = MTLModelClass(config['model'], config_global, logger)
                training = MTLTrainingClass(config['training'], config_global, logger)
                logger.info('Building the model')
                model.build(merged_data, sess)
                # start the training process
                logger.info('Starting the training process')
                training.start(model, merged_data, sess, mtl_evaluation)
                result = mtl_evaluation.start(model, merged_data, sess, valid_only=False)
                logger.info(
                    'Finished training the MTL model (mode={}) with dev={}, test(en)={}, test(de)={}'.format(
                        mode,
                        result['valid'],
                        result['test-en'],
                        result['test-de']
                    ))

                if i == 0:
                    results['mtl-{}'.format(mode)] = {'dev': [], 'test-en': [], 'test-de': []}
                results['mtl-{}'.format(mode)]['dev'].append(result['valid'])
                results['mtl-{}'.format(mode)]['test-en'].append(result['test-en'])
                results['mtl-{}'.format(mode)]['test-de'].append(result['test-de'])

        for mode in ['projected_de', 'gold+projected_de', 'labeled_en+projected_de', 'gold+labeled_en+projected_de',
                     #'labeled_de',
                     #'gold+labeled_de',
                     # 'gold+projected_en+labeled_de', 'gold+projected_en+labeled_en+labeled_de+projected_de'
                     #'gold+labeled_en+labeled_de+projected_de'
                     ]:
            logger.info('Now training with merged data, mode={}'.format(mode))
            tf.reset_default_graph()
            with tf.Session(config=sess_config) as sess:
                merged_data = data.get_merge(labeled_parallel_data_en, labeled_parallel_data_de, mode=mode)
                model = STLModelClass(config['model'], config_global, logger)
                training = STLTrainingClass(config['training'], config_global, logger)
                logger.info('Building the model')
                model.build(merged_data, sess)
                # start the training process
                logger.info('Starting the training process')
                training.start(model, merged_data, sess, stl_evaluation)
                result = stl_evaluation.start(model, merged_data, sess, valid_only=False, mode=mode)
                logger.info(
                    'Finished training the merged model (mode={}) with dev={}, test(en)={}, test(de)={}'.format(
                        mode,
                        result['valid'],
                        result['test-en'],
                        result['test-de']
                    ))

                if i == 0:
                    results['merge-{}'.format(mode)] = {'dev': [], 'test-en': [], 'test-de': []}
                results['merge-{}'.format(mode)]['dev'].append(result['valid'])
                results['merge-{}'.format(mode)]['test-en'].append(result['test-en'])
                results['merge-{}'.format(mode)]['test-de'].append(result['test-de'])

    logger.debug(json.dumps(results))
    data_writer.add_data_all(results.items())
    data_writer.finish()
    logger.info('DONE')
def run(config_file):
    """This program is the starting point for every experiment. It pulls together the configuration and all necessary
    experiment classes to load

    """
    config = load_config(config_file)
    config_global = config['global']

    # setup a logger
    logger = logging.getLogger('experiment')
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler_stdout = logging.StreamHandler(sys.stdout)
    handler_stdout.setLevel(config['logger']['level'])
    handler_stdout.setFormatter(formatter)
    logger.addHandler(handler_stdout)

    if 'path' in config['logger']:
        handler_file = logging.FileHandler(config['logger']['path'])
        handler_file.setLevel(config['logger']['level'])
        handler_file.setFormatter(formatter)
        logger.addHandler(handler_file)

    logger.setLevel(config['logger']['level'])

    # Allow the gpu to be used in parallel
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.allow_growth = True
    if 'max_threads' in config_global:
        sess_config.intra_op_parallelism_threads = config_global['max_threads']

    np.random.seed(1)
    tf.set_random_seed(1)

    with tf.Session(config=sess_config) as sess:
        # We are now fetching all relevant modules. It is strictly required that these module contain a variable named
        # 'component' that points to a class which inherits from experiment.Data, experiment.Experiment,
        # experiment.Trainer or experiment.Evaluator
        data_module = config['data-module']
        model_module = config['model-module']
        training_module = config['training-module']
        evaluation_module = config.get('evaluation-module', None)

        # The modules are now dynamically loaded
        DataClass = importlib.import_module(data_module).component
        ModelClass = importlib.import_module(model_module).component
        TrainingClass = importlib.import_module(training_module).component
        EvaluationClass = importlib.import_module(evaluation_module).component if evaluation_module else None

        # We then wire together all the modules and start training
        data = DataClass(config['data'], config_global, logger)
        model = ModelClass(config['model'], config_global, logger)
        training = TrainingClass(config['training'], config_global, logger)

        # setup the data (validate, create generators, load data, or else)
        logger.info('Setting up the data')
        data.setup()
        # build the model (e.g. compile it)
        logger.info('Building the model')
        model.build(data, sess)
        # start the training process
        logger.info('Starting the training process')
        training.start(model, data, sess)

        # perform evaluation, if required
        if EvaluationClass:
            logger.info('Evaluating')
            evaluation = EvaluationClass(config['evaluation'], config_global, logger)
            evaluation.start(model, data, sess)
        else:
            logger.info('No evaluation')

        logger.info('DONE')
Пример #9
0
def run(config_file):
    """This program is the starting point for every experiment. It pulls together the configuration and all necessary
    experiment classes to load

    """
    config = load_config(config_file)
    logger = logging_utils.setup(config)
    data_writer = DataWriter(config['report'], logger)
    try:
        for task in config['tasks']:
            task_name = task['name']
            repetitions = task['repetitions']
            with open(task['config'], 'r') as f:
                task_config = f.read()
            data_writer.add_task(task_name)
            logger.info('Task {}'.format(task_name))

            results = []
            for run in task['runs']:
                run_config = read_config(task_config.format(**run))
                run_config_global = run_config['global']
                run_name = run_config.get('name', json.dumps(run))
                logger.info('Run {}'.format(run_name))

                data_module = run_config['data-module']
                model_module = run_config['model-module']
                training_module = run_config['training-module']
                evaluation_module = run_config.get('evaluation-module')
                DataClass = importlib.import_module(data_module).component
                ModelClass = importlib.import_module(model_module).component
                TrainingClass = importlib.import_module(training_module).component
                EvaluationClass = importlib.import_module(evaluation_module).component

                data = DataClass(run_config['data'], run_config_global, logger)
                logger.debug('Setting up the data')
                data.setup()

                best_lr = 0
                best_dev_score = 0
                best_dev_results = []
                for lr in [0.05, 0.01, 0.005, 0.001, 0.0005]:
                    train_conf = dict(run_config['training'])
                    train_conf['initial_learning_rate'] = lr

                    run_results = OrderedDict()
                    for i in range(repetitions):
                        logger.info('Repetition {}'.format(i))
                        data.reshuffle(i)  # e.g. random subsample

                        sess_config = tf.ConfigProto()
                        sess_config.gpu_options.allow_growth = True

                        tf.reset_default_graph()
                        with TemporaryDirectory() as tmp_dir:
                            train_conf['save_folder'] = tmp_dir
                            with tf.Session(config=sess_config) as sess:
                                model = ModelClass(run_config['model'], run_config_global, logger)
                                training = TrainingClass(train_conf, run_config_global, logger)
                                evaluation = EvaluationClass(run_config['evaluation'], run_config_global, logger)

                                # build the model (e.g. compile it)
                                logger.debug('Building the model')
                                model.build(data, sess)
                                # start the training process
                                logger.debug('Starting the training process')
                                training.start(model, data, sess, evaluation)
                                logger.debug('Evaluating')
                                result = evaluation.start(model, data, sess, valid_only=False)
                                logger.info('Got results for {}: {}'.format(run_name, json.dumps(result)))

                                for key, value in result.items():
                                    if key not in run_results:
                                        run_results[key] = []
                                    run_results[key].append(value)

                    aggregated_dev = np.mean(run_results['valid'])
                    if aggregated_dev > best_dev_score:
                        best_dev_score = aggregated_dev
                        best_dev_results = run_results
                        best_lr = lr

                logger.info('best result {} for run with learning rate {}'.format(best_dev_score, best_lr))
                results.append((run_name, best_dev_results))

            data_writer.add_data_all(results)
    finally:
        data_writer.finish()

    logger.info('DONE')
Пример #10
0
def run(config_file):
    """This program is the starting point for every experiment. It pulls together the configuration and all necessary
    experiment classes to load

    """
    config = load_config(config_file)
    config_global = config['global']
    config_random_search = config['random_search']
    logger = setup_logger(config['logger'], 'random_search')

    parameter_value_sampling = ParameterValueSampling(config_random_search['parameters'])

    data_module = config['data-module']
    model_module = config['model-module']
    training_module = config['training-module']
    evaluation_module = config.get('evaluation-module', None)

    DataClass = importlib.import_module(data_module).component
    ModelClass = importlib.import_module(model_module).component
    TrainingClass = importlib.import_module(training_module).component
    EvaluationClass = importlib.import_module(evaluation_module).component

    logger.info('Setting up the data')
    data = DataClass(config['data'], config_global, logger)
    data.setup()

    logger.info('Now starting the random search')
    stop_time = datetime.datetime.now() + datetime.timedelta(hours=config_random_search['max_hours'])
    logger.info('Stopping at {}'.format(stop_time))

    if not os.path.exists(config_random_search['output_path']):
        os.mkdir(config_random_search['output_path'])

    n_runs = 0
    best_run_id, best_run_score, best_run_params = 0, 0, None
    while datetime.datetime.now() < stop_time:
        n_runs += 1
        run_path = os.path.join(config_random_search['output_path'], 'run-{}'.format(n_runs))

        # we build a new config according to the random search configuration
        random_params = parameter_value_sampling.get_random_values()

        logger.info('-' * 20)
        logger.info('Run {}'.format(n_runs))
        logger.info('With params: {}'.format(json.dumps(random_params)))

        config_run = replace_dict_values(config, random_params + [('training.remove_save_folder_on_start', True)])

        with open('{}.yaml'.format(run_path), 'w') as f:
            yaml.dump(config_run, f, default_flow_style=False)

        # we add a new handler to the logger to print all messages to a separate file
        run_log_handler = logging.FileHandler('{}.log'.format(run_path))
        run_log_handler.setLevel(config['logger']['level'])
        run_log_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
        logger.addHandler(run_log_handler)

        tf.reset_default_graph()
        with tf.Session(config=sess_config) as sess:
            model = ModelClass(config_run['model'], config_global, logger)
            training = TrainingClass(config_run['training'], config_global, logger)
            evaluation = EvaluationClass(config_run['evaluation'], config_global, logger)

            # build the model (e.g. compile it)
            logger.info('Building the model')
            model.build(data, sess)
            # start the training process
            logger.info('Starting the training process')
            best_epoch, best_score = training.start(model, data, sess, evaluation)
            logger.info('DONE')

            # We write the dev score to a file
            with open('{}.score'.format(run_path), 'w') as f:
                f.write('Score: {}\n'.format(best_score))
                f.write('In epoch: {}\n'.format(best_epoch))
                f.write('With params: {}\n'.format(json.dumps(random_params)))

        if best_run_score < best_score:
            best_run_id = n_runs
            best_run_score = best_score
            best_run_params = random_params

        logger.removeHandler(run_log_handler)

    logger.info('-' * 20)
    logger.info('Now stopping. Did perform {} runs.'.format(n_runs))
    logger.info('Best run: id={} with score {}'.format(best_run_id, best_run_score))
    logger.info('Parameters={}'.format(json.dumps(best_run_params)))
Пример #11
0
def run(config_file):
    """This program allows to perform hyperparameter optimization with grid search and cross validation.

    """
    config = load_config(config_file)

    # to reproduce the results
    np.random.seed(1)
    tf.set_random_seed(1)

    # We are now fetching all relevant modules. It is strictly required that these module contain a variable named
    # 'component' that points to a class which inherits from experiment.Data, experiment.Experiment, experiment.Trainer
    # or experiment.Evaluator
    data_module = config['data-module']
    model_module = config['model-module']
    training_module = config['training-module']

    # The modules are now dynamically loaded
    DataClass = importlib.import_module(data_module).component
    ModelClass = importlib.import_module(model_module).component
    TrainingClass = importlib.import_module(training_module).component

    # setup a logger
    logger = logging.getLogger('experiment')
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler_stdout = logging.StreamHandler(sys.stdout)
    handler_stdout.setLevel(config['logger']['level'])
    handler_stdout.setFormatter(formatter)
    logger.addHandler(handler_stdout)

    if 'path' in config['logger']:
        handler_file = logging.FileHandler(config['logger']['path'])
        handler_file.setLevel(config['logger']['level'])
        handler_file.setFormatter(formatter)
        logger.addHandler(handler_file)

    logger.setLevel(config['logger']['level'])

    # We then wire together all the modules
    config_global = config['global']
    config_optimization = config['optimization']

    logger.info('Setting up the data')
    data_complete = DataClass(config['data'], config_global, logger)
    data_complete.setup()

    # Cross fold optimization
    # We first need to create all the configuration choices for grid search
    optimization_parameters = config_optimization['parameters']
    grid = list(itertools.product(*config_optimization['parameters'].values()))
    logger.info('We have {} different hyperparameter combinations'.format(
        len(grid)))

    # We now go over all choices and perform cross-fold validation
    avg_scores = []
    for configuration_values_overwrite in grid:
        parameter_choices = list(
            zip(optimization_parameters.keys(),
                configuration_values_overwrite))
        config_run = replace_dict_values(config, parameter_choices)

        logger.info('-' * 40)
        logger.info('Checking configuration {}'.format(
            json.dumps(parameter_choices)))

        # Run each fold
        n_folds = config_optimization['folds']
        scores = []
        for fold_i in range(n_folds):
            logger.info('Starting fold {}/{}'.format(fold_i + 1, n_folds))
            with tf.Session(config=sess_config) as sess:
                training = TrainingClass(config_run['training'], config_global,
                                         logger)
                model = ModelClass(config_run['model'], config_global, logger)
                model.build(data_complete, sess)
                data_fold = data_complete.get_fold_data(fold_i, n_folds)
                best_epoch, best_score = training.start(model, data_fold, sess)
                scores.append(best_score)
                logger.info('Fold {}/{} performance: {}'.format(
                    fold_i + 1, n_folds, best_score))
                logger.info('-' * 20)
                training.remove_checkpoints()
            tf.reset_default_graph()

        logger.info('Training ended')
        logger.info('All scores: {}'.format(json.dumps(scores)))
        avg_score = np.mean(scores)
        logger.info(
            'Avg score for current configuration: {}'.format(avg_score))
        avg_scores.append(avg_score)

    best_configuration = grid[np.argmax(avg_scores)]
    logger.info('Grid search completed')
    logger.info('Best configuration: {} (score={})'.format(
        best_configuration, max(avg_scores)))
    logger.info('-')
    logger.info('All configurations: {}'.format(json.dumps(grid)))
    logger.info('All scores: {}'.format(avg_scores))

    logger.info('DONE')
Пример #12
0
def run_cmd(config_file):
    config = load_config(config_file)

    def run():
        """This program is the starting point for every experiment. It pulls together the configuration and all
        necessary experiment classes to load

        """
        run_name = config.get('run_name', 'undefined name')
        config_global = config['global']

        if not os.path.exists(config_global['output_path']):
            os.mkdir(config_global['output_path'])

        write_config(config, config_global['output_path'])

        # setup a logger
        logger = setup_logger(config['logger'], config_global['output_path'], name='experiment')

        # we allow to set the random seed in the config file for reproducibility. However, when running on GPU, results
        # can still be nondeterministic
        if 'random_seed' in config_global:
            seed = config_global['random_seed']
            logger.info('Using fixed random seed'.format(seed))
            np.random.seed(seed)
            tf.set_random_seed(seed)

        # We are now fetching all relevant modules. It is strictly required that these module contain a variable named
        # 'component' that points to a class which inherits from experiment.Data, experiment.Experiment,
        # experiment.Trainer or experiment.Evaluator
        multi_data_module = MultiData(config['data'], config, logger)
        for dataset_config in config['data']:
            data_module = dataset_config['data-module']
            splits = dataset_config.get('splits', ['train', 'dev', 'test'])
            DataClass = importlib.import_module(data_module).component
            data = DataClass(dataset_config, config_global, logger)
            multi_data_module.add(data, splits)

        model_module = config['model-module']
        training_module = config['training-module']
        evaluation_module = config.get('evaluation-module', None)

        # The modules are now dynamically loaded
        ModelClass = importlib.import_module(model_module).component
        TrainingClass = importlib.import_module(training_module).component
        EvaluationClass = importlib.import_module(evaluation_module).component

        if "adapter_mean_estimation-module" in config:
            ame_module = config["adapter_mean_estimation-module"]
            AMEClass = importlib.import_module(ame_module).component
            ame = AMEClass(config['adapter_mean_estimation'], config_global, logger)

        # We then wire together all the modules and start training
        model = ModelClass(config['model'], config_global, logger)
        training = TrainingClass(config['training'], config_global, logger)
        evaluation = EvaluationClass(config['evaluation'], config_global, logger)

        # setup the data (validate, create generators, load data, or else)
        logger.info('Setting up the data')
        multi_data_module.setup()
        # build the model (e.g. compile it)
        logger.info('Building the model')
        model.build(multi_data_module)

        # start the training process
        if not config["training"].get("skip", False):
            logger.info('Starting the training process')
            training.start(model, multi_data_module, evaluation)
        dev_score = training.restore_best_epoch(model, multi_data_module, evaluation)

        # perform evaluation, if required
        if not config['evaluation'].get('skip', False):
            logger.info('Evaluating')
            results = evaluation.start(model, multi_data_module, valid_only=False)
        else:
            logger.info('Skipping evaluation')
            results = {'dev': dev_score}

        logger.info('DONE')

        return {
            'run_name': run_name,
            'results': results
        }

    run()
Пример #13
0
def run(config_file, port):
    """This program is the starting point for every experiment. It pulls together the configuration and all necessary
    experiment classes to load

    """
    global sess, model, config, data

    config = load_config(config_file)
    config_global = config['global']

    # setup a logger
    logger = logging.getLogger('experiment')
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler_stdout = logging.StreamHandler(sys.stdout)
    handler_stdout.setLevel(config['logger']['level'])
    handler_stdout.setFormatter(formatter)
    logger.addHandler(handler_stdout)

    if 'path' in config['logger']:
        handler_file = logging.FileHandler(config['logger']['path'])
        handler_file.setLevel(config['logger']['level'])
        handler_file.setFormatter(formatter)
        logger.addHandler(handler_file)

    logger.setLevel(config['logger']['level'])

    # Allow the gpu to be used in parallel
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.allow_growth = True
    if 'max_threads' in config_global:
        sess_config.intra_op_parallelism_threads = config_global['max_threads']

    # we allow to set the random seed in the config file for reproducibility. However, when running on GPU, results
    # will still be nondeterministic (due to nondeterministic behavior of tensorflow)
    if 'random_seed' in config_global:
        seed = config_global['random_seed']
        logger.info('Using fixed random seed'.format(seed))
        np.random.seed(seed)
        tf.set_random_seed(seed)

    sess = tf.InteractiveSession(config=sess_config)

    # We are now fetching all relevant modules. It is strictly required that these module contain a variable named
    # 'component' that points to a class which inherits from experiment.Data, experiment.Experiment,
    # experiment.Trainer or experiment.Evaluator
    data_module = config['data-module']
    model_module = config['model-module']
    training_module = config['training-module']

    # The modules are now dynamically loaded
    DataClass = importlib.import_module(data_module).component
    ModelClass = importlib.import_module(model_module).component
    TrainingClass = importlib.import_module(training_module).component

    # We then wire together all the modules and start training
    data = DataClass(config['data'], config_global, logger)
    model = ModelClass(config['model'], config_global, logger)
    training = TrainingClass(config['training'], config_global, logger)

    # setup the data (validate, create generators, load data, or else)
    logger.info('Setting up the data')
    data.setup()
    # build the model (e.g. compile it)
    logger.info('Building the model')
    model.build(data, sess)
    # start the training process
    logger.info('Starting the training process')
    training.start(model, data, sess)

    app.run(debug=False, port=port, host="0.0.0.0")
    sess.close()
Пример #14
0
def run(config_file):
    """This program is the starting point for every experiment. It pulls together the configuration and all necessary
    experiment classes to load

    """
    config = load_config(config_file)
    config_global = config['global']

    # setup a logger
    logger = setup_logger(config['logger'], name='service')

    # we allow to set the random seed in the config file for reproducibility. However, when running on GPU, results
    # will still be nondeterministic (due to nondeterministic behavior of tensorflow)
    if 'random_seed' in config_global:
        seed = config_global['random_seed']
        logger.info('Using fixed random seed'.format(seed))
        np.random.seed(seed)
        tf.set_random_seed(seed)

    with tf.Session(config=sess_config) as sess:
        # We are now fetching all relevant modules. It is strictly required that these module contain a variable named
        # 'component' that points to a class which inherits from experiment.Data, experiment.Experiment,
        # experiment.Trainer or experiment.Evaluator
        data_module = config['data-module']
        model_module = config['model-module']

        # The modules are now dynamically loaded
        DataClass = importlib.import_module(data_module).component
        ModelClass = importlib.import_module(model_module).component

        # We then wire together all the modules and start training
        data = DataClass(config['data'], config_global, logger)
        model = ModelClass(config['model'], config_global, logger)

        # setup the data (validate, create generators, load data, or else)
        logger.info('Setting up the data')
        data.setup()
        # build the model (e.g. compile it)
        logger.info('Building the model')
        model.build(data, sess)

        # restore the model
        logger.info('Restoring the model')
        saver = tf.train.Saver()
        saver.restore(
            sess,
            tf.train.latest_checkpoint(config['training']['save_folder']))
        logger.info('Restored the model')

        # serve service
        while True:
            line = sys.stdin.readline().strip()
            if line == 'START QUERY':
                question = sys.stdin.readline()
                q_tokens = question.strip().split()
                question = convert_input(q_tokens, data.vocab_to_index)

                n_answer = int(sys.stdin.readline().strip())
                answers = []
                for _ in range(n_answer):
                    answer = sys.stdin.readline()
                    a_tokens = answer.strip().split()
                    answer = convert_input(a_tokens, data.vocab_to_index)
                    answers.append(answer)

                question = np.array([
                    data.get_item_vector(question, 150)
                    for _ in range(len(answers))
                ])
                answers = np.array(
                    [data.get_item_vector(answer, 300) for answer in answers])

                # run model
                scores, = sess.run(
                    [model.predict],
                    feed_dict={
                        model.input_question: question,
                        model.input_answer: answers,
                        model.dropout_keep_prob: 1.0,
                    })

                selected = np.argsort(-scores)[:5]

                enablePrint()
                sys.stdout.write(
                    (' '.join([str(idx) for idx in selected]) + '\n'))
                sys.stdout.flush()
                blockPrint()
def run(config_file):
    """This program allows to perform hyperparameter optimization with grid search and cross validation.

    """
    config = load_config(config_file)

    # to reproduce the results
    np.random.seed(1)
    tf.set_random_seed(1)

    # We are now fetching all relevant modules. It is strictly required that these module contain a variable named
    # 'component' that points to a class which inherits from experiment.Data, experiment.Experiment, experiment.Trainer
    # or experiment.Evaluator
    data_module = config['data-module']
    model_module = config['model-module']
    training_module = config['training-module']

    # The modules are now dynamically loaded
    DataClass = importlib.import_module(data_module).component
    ModelClass = importlib.import_module(model_module).component
    TrainingClass = importlib.import_module(training_module).component

    # setup a logger
    logger = logging.getLogger('experiment')
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler_stdout = logging.StreamHandler(sys.stdout)
    handler_stdout.setLevel(config['logger']['level'])
    handler_stdout.setFormatter(formatter)
    logger.addHandler(handler_stdout)

    if 'path' in config['logger']:
        handler_file = logging.FileHandler(config['logger']['path'])
        handler_file.setLevel(config['logger']['level'])
        handler_file.setFormatter(formatter)
        logger.addHandler(handler_file)

    logger.setLevel(config['logger']['level'])

    # We then wire together all the modules
    config_global = config['global']
    config_optimization = config['optimization']

    logger.info('Setting up the data')
    data_complete = DataClass(config['data'], config_global, logger)
    data_complete.setup()

    # Cross fold optimization
    # We first need to create all the configuration choices for grid search
    optimization_parameters = config_optimization['parameters']
    grid = list(itertools.product(*config_optimization['parameters'].values()))
    logger.info('We have {} different hyperparameter combinations'.format(len(grid)))

    # We now go over all choices and perform cross-fold validation
    avg_scores = []
    for configuration_values_overwrite in grid:
        parameter_choices = list(zip(optimization_parameters.keys(), configuration_values_overwrite))
        config_run = replace_dict_values(config, parameter_choices)

        logger.info('-' * 40)
        logger.info('Checking configuration {}'.format(json.dumps(parameter_choices)))

        # Run each fold
        n_folds = config_optimization['folds']
        scores = []
        for fold_i in range(n_folds):
            logger.info('Starting fold {}/{}'.format(fold_i + 1, n_folds))
            with tf.Session(config=sess_config) as sess:
                training = TrainingClass(config_run['training'], config_global, logger)
                model = ModelClass(config_run['model'], config_global, logger)
                model.build(data_complete, sess)
                data_fold = data_complete.get_fold_data(fold_i, n_folds)
                best_epoch, best_score = training.start(model, data_fold, sess)
                scores.append(best_score)
                logger.info('Fold {}/{} performance: {}'.format(fold_i + 1, n_folds, best_score))
                logger.info('-' * 20)
                training.remove_checkpoints()
            tf.reset_default_graph()

        logger.info('Training ended')
        logger.info('All scores: {}'.format(json.dumps(scores)))
        avg_score = np.mean(scores)
        logger.info('Avg score for current configuration: {}'.format(avg_score))
        avg_scores.append(avg_score)

    best_configuration = grid[np.argmax(avg_scores)]
    logger.info('Grid search completed')
    logger.info('Best configuration: {} (score={})'.format(best_configuration, max(avg_scores)))
    logger.info('-')
    logger.info('All configurations: {}'.format(json.dumps(grid)))
    logger.info('All scores: {}'.format(avg_scores))

    logger.info('DONE')