Пример #1
0
def main():
    # Experiment specifications
    imagename = 'image_Lena512rgb.png'

    # Load noise-free image
    y = np.array(Image.open(imagename)) / 255

    # Possible noise types to be generated 'gw', 'g1', 'g2', 'g3', 'g4', 'g1w',
    # 'g2w', 'g3w', 'g4w'.
    noise_type = 'g3'
    noise_var = 0.02  # Noise variance
    seed = 0  # seed for pseudorandom noise realization

    # Generate noise with given PSD
    noise, psd, kernel = get_experiment_noise(noise_type, noise_var, seed,
                                              y.shape)
    # N.B.: For the sake of simulating a more realistic acquisition scenario,
    # the generated noise is *not* circulant. Therefore there is a slight
    # discrepancy between PSD and the actual PSD computed from infinitely many
    # realizations of this noise with different seeds.

    # Generate noisy image corrupted by additive spatially correlated noise
    # with noise power spectrum PSD
    z = np.atleast_3d(y) + np.atleast_3d(noise)

    # Call BM3D With the default settings.
    y_est = bm3d_rgb(z, psd)

    # To include refiltering:
    # y_est = bm3d_rgb(z, psd, 'refilter');

    # For other settings, use BM3DProfile.
    # profile = BM3DProfile(); # equivalent to profile = BM3DProfile('np');
    # profile.gamma = 6;  # redefine value of gamma parameter
    # y_est = bm3d_rgb(z, psd, profile);

    # Note: For white noise, you may instead of the PSD
    # also pass a standard deviation
    # y_est = bm3d_rgb(z, sqrt(noise_var));

    # If the different channels have varying PSDs, you can supply a MxNx3 PSD or a list of 3 STDs:
    # y_est = bm3d_rgb(z, np.concatenate((psd1, psd2, psd3), 2))
    # y_est = bm3d_rgb(z, [sigma1, sigma2, sigma3])

    psnr = get_psnr(y, y_est)
    print("PSNR:", psnr)

    # PSNR ignoring 16-pixel wide borders (as used in the paper), due to refiltering potentially leaving artifacts
    # on the pixels near the boundary of the image when noise is not circulant
    psnr_cropped = get_cropped_psnr(y, y_est, [16, 16])
    print("PSNR cropped:", psnr_cropped)

    # Ignore values outside range for display (or plt gives an error for multichannel input)
    y_est = np.minimum(np.maximum(y_est, 0), 1)
    z_rang = np.minimum(np.maximum(z, 0), 1)

    plt.title("y, z, y_est")
    plt.imshow(np.concatenate((y, np.squeeze(z_rang), y_est), axis=1))
    plt.show()
Пример #2
0
def add_noise(image, sigma):
    from experiment_funcs import get_experiment_noise

    y = np.array(Image.open(imagename)) / 255
    noise_type = "gw"
    noise_var = (sigma / 255) ** 2  # Noise variance 25 std
    seed = 0  # seed for pseudorandom noise realization
    noise, psd, kernel = get_experiment_noise(noise_type, noise_var, seed, y.shape)
    z = np.atleast_3d(y) + np.atleast_3d(noise)
    z_rang = np.minimum(np.maximum(z, 0), 1)
    noisyimagename = imagepath + "noisy\\" + t + "_g.bmp"
    plt.imsave(noisyimagename, z_rang)
Пример #3
0
def GPP_Color_solve(test_img='color_tiger',
                    savedir='outs_gpp_color',
                    USE_BM3D=True):
    savedir = 'outs_color'
    test_img = 'color_leapord'

    # I_x = I_y = 512 #size of images (can be varied)
    I_x = 768
    I_y = 512
    d_x = d_y = 32  #size of patches (can be varied)
    n_measure = 0.1  #measurement rate (can be varied)
    nIter = 5001

    if USE_BM3D:
        from bm3d import bm3d, BM3DProfile
        from experiment_funcs import get_experiment_noise
        noise_type = 'g0'
        noise_var = 0.01  # Noise variance
        seed = 0  # seed for pseudorandom noise realization

        # Generate noise with given PSD
        noise, psd, kernel = get_experiment_noise(noise_type, noise_var, seed,
                                                  [256, 256])
        ###

    if not os.path.exists(savedir):
        os.makedirs(savedir)

    dim_x = d_x * d_y
    batch_size = (I_x * I_y) // (dim_x)
    nz = 100  #latent dimensionality of GAN (fixed)

    dim_phi = int(n_measure * dim_x)

    n_img_plot_x = I_x // d_x
    n_img_plot_y = I_y // d_y
    workers = 2
    ngpu = 1
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    ## measurement operator
    phi_np = np.random.randn(dim_x, dim_phi)
    phi_test = torch.Tensor(phi_np)

    iters = np.array(np.geomspace(10, 10, nIter), dtype=int)
    fname = '../test_images/{}.jpg'.format(test_img)
    image = io.imread(fname)
    x_test = resize(image, (I_x, I_y),
                    anti_aliasing=True,
                    preserve_range=True,
                    mode='reflect')
    x_test_ = np.array(x_test) / 255.
    print(x_test_.shape)

    x_test = []
    for i in range(n_img_plot_x):
        for j in range(n_img_plot_y):
            _x = x_test_[i * d_x:d_x * (i + 1), j * d_y:d_y * (j + 1)]
            x_test.append(_x)

    x_test = np.array(x_test)
    print(x_test.shape)
    test_images = torch.Tensor(
        np.transpose(x_test[:batch_size, :, :, :], [0, 3, 1, 2]))
    # vutils.imsave(test_images,[n_img_plot_x,n_img_plot_y],'cs_outs/gt_sample.png')
    # img_gt = vutils.make_grid(test_images,nrow=n_img_plot_y, padding=0, normalize=True)
    # vutils.save_image(img_gt,'outs/gt_sample.png')
    io.imsave('{}/gt.png'.format(savedir), (255 * x_test_).astype(np.uint8))

    genPATH = './all_models/generator.pt'

    netG = Generator(ngpu=ngpu, nc=3).to(device)
    netG.apply(weights_init)
    if (device.type == 'cuda') and (ngpu > 1):
        netG = nn.DataParallel(netG, list(range(ngpu)))

    if os.path.isfile(genPATH):
        if device.type == 'cuda':
            netG.load_state_dict(torch.load(genPATH))
        elif device.type == 'cpu':
            netG.load_state_dict(
                torch.load(genPATH, map_location=torch.device('cpu')))
        else:
            raise Exception("Unable to load model to specified device")

        print("************ Generator weights restored! **************")
        netG.eval()

    criterion = nn.MSELoss()
    z_prior = torch.zeros(batch_size,
                          nz,
                          1,
                          1,
                          requires_grad=True,
                          device=device)

    optimizerZ = optim.RMSprop([z_prior], lr=5e-3)

    real_cpu = test_images.to(device)

    for iters in range(nIter):
        optimizerZ.zero_grad()

        z2 = torch.clamp(z_prior, -1., 1.)
        fake = 0.5 * netG(z2) + 0.5
        fake = nnf.interpolate(fake,
                               size=(d_x, d_y),
                               mode='bilinear',
                               align_corners=False)
        cost = 0.

        for i in range(3):
            y_gt, y_est = cs_measure(real_cpu[:, i, :, :], fake[:, i, :, :],
                                     phi_test.to(device))
            cost += criterion(y_gt, y_est)

        cost.backward()
        optimizerZ.step()
        if (iters % 50 == 0):

            with torch.no_grad():
                z2 = torch.clamp(z_prior, -1., 1.)
                fake = 0.5 * netG(z2).detach().cpu() + 0.5
                fake = nnf.interpolate(fake,
                                       size=(d_x, d_y),
                                       mode='bilinear',
                                       align_corners=False)
                G_imgs = np.transpose(fake.detach().cpu().numpy(),
                                      [0, 2, 3, 1])

            imgest = merge(G_imgs, [n_img_plot_x, n_img_plot_y])
            psnr = compare_psnr(x_test_, imgest, data_range=1.0)

            if USE_BM3D:
                merged_clean = bm3d(imgest, psd)
                psnr1 = compare_psnr(x_test_, merged_clean, data_range=1.0)
                print(
                    'Iter: {:d}, Error: {:.3f}, PSNR-raw: {:.3f}, PSNR-bm3d: {:.3f}'
                    .format(iters, cost.item(), psnr, psnr1))
                io.imsave(
                    '{}/inv_solution_bm3d_iters_{}.png'.format(
                        savedir,
                        str(iters).zfill(4)),
                    (255 * merged_clean).astype(np.uint8))
            else:
                print('Iter: {:d}, Error: {:.3f}, PSNR-raw: {:.3f}'.format(
                    iters, cost.item(), psnr))
                io.imsave(
                    '{}/inv_solution_iters_{}.png'.format(
                        savedir,
                        str(iters).zfill(4)), (255 * imgest).astype(np.uint8))
Пример #4
0
def main(t, sigma, args=None):
    # Experiment specifications
    #imagename = 'image_Lena512rgb.png'
    imagepath = args.path + '\\'
    imagename = imagepath + 'ref\\' + t + '_r.bmp'
    # Load noise-free image
    y = np.array(Image.open(imagename)) / 255

    # Possible noise types to be generated 'gw', 'g1', 'g2', 'g3', 'g4', 'g1w',
    # 'g2w', 'g3w', 'g4w'.
    noise_type = 'gw'
    noise_var = (sigma / 255)**2  # Noise variance 25 std
    seed = 0  # seed for pseudorandom noise realization

    # Generate noise with given PSD
    noise, psd, kernel = get_experiment_noise(noise_type, noise_var, seed,
                                              y.shape)
    # N.B.: For the sake of simulating a more realistic acquisition scenario,
    # the generated noise is *not* circulant. Therefore there is a slight
    # discrepancy between PSD and the actual PSD computed from infinitely many
    # realizations of this noise with different seeds.

    # Generate noisy image corrupted by additive spatially correlated noise
    # with noise power spectrum PSD
    z = np.atleast_3d(y) + np.atleast_3d(noise)

    z_rang = np.minimum(np.maximum(z, 0), 1)
    noisyimagename = imagepath + 'noisy\\' + t + '_g.bmp'
    plt.imsave(noisyimagename, z_rang)
    z = np.array(Image.open(noisyimagename)) / 255
    # Call BM3D With the default settings.
    y_est = bm3d_rgb(z, psd)

    # To include refiltering:
    # y_est = bm3d_rgb(z, psd, 'refilter');

    # For other settings, use BM3DProfile.
    # profile = BM3DProfile(); # equivalent to profile = BM3DProfile('np');
    # profile.gamma = 6;  # redefine value of gamma parameter
    # y_est = bm3d_rgb(z, psd, profile);

    # Note: For white noise, you may instead of the PSD
    # also pass a standard deviation
    # y_est = bm3d_rgb(z, sqrt(noise_var));

    # If the different channels have varying PSDs, you can supply a MxNx3 PSD or a list of 3 STDs:
    # y_est = bm3d_rgb(z, np.concatenate((psd1, psd2, psd3), 2))
    # y_est = bm3d_rgb(z, [sigma1, sigma2, sigma3])

    psnr = get_psnr(y, y_est)
    print("PSNR:", psnr)

    # PSNR ignoring 16-pixel wide borders (as used in the paper), due to refiltering potentially leaving artifacts
    # on the pixels near the boundary of the image when noise is not circulant
    psnr_cropped = get_cropped_psnr(y, y_est, [16, 16])
    print("PSNR cropped:", psnr_cropped)

    # Ignore values outside range for display (or plt gives an error for multichannel input)
    y_est = np.minimum(np.maximum(y_est, 0), 1)
    z_rang = np.minimum(np.maximum(z, 0), 1)
    opath = 'bm3d_{0}.bmp'.format(t)
    plt.imsave(opath.format(t), y_est)
    y_est = np.array(Image.open(opath.format(t))) / 255

    psnr = get_psnr(y, y_est)
    print("PSNR 2:", psnr)
    mse = ((y_est - y)**2).mean() * 255
    print("MSE:", mse)
    #plt.imsave(imagepath+ 'noisy\\' + t + '_g.bmp', z_rang)

    # TEST CV2 PSNR
    try:
        from skimage.metrics import structural_similarity as compare_ssim
    except Exception:
        from skimage.measure import compare_ssim
    import cv2
    opath = 'bm3d_{0}.bmp'.format(t)
    argref = imagename  # path of noisy image
    d = cv2.imread(opath)
    tref = cv2.imread(argref)
    (score, diff) = compare_ssim(tref, d, full=True, multichannel=True)
    psnr2 = cv2.PSNR(tref, d)
    print('#######################')
    print('CV2 PSNR, SSIM: {:.2f}, {:.2f}'.format(psnr2, score))
    print('#######################')
    print('')
    #plt.title("y, z, y_est")
    #plt.imshow(np.concatenate((y, np.squeeze(z_rang), y_est), axis=1))
    #plt.show()
    return psnr, mse
Пример #5
0
def GPP_solve():
    USE_BM3D = True
    savedir = './outs_pt'
    genPATH = './all_models/grayscale_generator.pt'
    # genPATH = './all_models/grayscale_generator_v1-4-0.model'
    filename = 'Monarch'
    fname = '../test_images/{}.tif'.format(filename)

    if not os.path.exists(savedir):
        os.makedirs(savedir)

    I_y = 256
    I_x = 256
    d_x = d_y = 32
    dim_x = d_x*d_y
    batch_size = (I_x*I_y)//(dim_x)
    n_measure = 0.1
    nz = 100

    dim_phi = int(n_measure*dim_x)
    nIter = 5001
    n_img_plot_x = I_x//d_x
    n_img_plot_y = I_y//d_y
    workers = 2
    ngpu = 1
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    ## measurement operator
    phi_np = np.random.randn(dim_x,dim_phi)
    phi_test = torch.Tensor(phi_np)


    if USE_BM3D:
        from bm3d import bm3d, BM3DProfile
        from experiment_funcs import get_experiment_noise
        noise_type = 'g0'
        noise_var = 0.02 # Noise variance
        seed = 0  # seed for pseudorandom noise realization

        # Generate noise with given PSD
        noise, psd, kernel = get_experiment_noise(noise_type, noise_var, seed, [256,256])
        ###

    def cs_measure(gt,est,phi):
        n_dim = gt.shape[2]* gt.shape[3]
        y_gt = torch.matmul(gt.view(-1,n_dim),phi)
        y_est = torch.matmul(est.view(-1,n_dim),phi)
        return y_gt,y_est



    x_test = Image.open(fname).convert(mode='L').resize((I_x,I_y))
    x_test_ = np.expand_dims(np.array(x_test)/255.,axis=2)
    torch_gt = torch.Tensor(np.transpose(x_test_,[2,0,1]))

    io.imsave('{}/gt.png'.format(savedir),(255*x_test_[:,:,0]).astype(np.uint8))
    # x_test_ = 2*x_test_-1
    x_test = []
    for i in range(n_img_plot_x):
        for j in range(n_img_plot_y):
            _x = x_test_[i*d_x:d_x*(i+1),j*d_y:d_y*(j+1)]
            x_test.append(_x)

    x_test = np.array(x_test)


    test_images = torch.Tensor(np.transpose(x_test[:batch_size,:,:,:],[0,3,1,2]))

    netG = Generator(ngpu=ngpu,nc=1).to(device)

    if (device.type == 'cuda') and (ngpu > 1):
        netG = nn.DataParallel(netG, list(range(ngpu)))

    netG.apply(weights_init)


    if os.path.isfile(genPATH):
        if device.type == 'cuda':
            netG.load_state_dict(torch.load(genPATH))
        elif device.type=='cpu':
            netG.load_state_dict(torch.load(genPATH,map_location=torch.device('cpu')))
        else:
            raise Exception("Unable to load model to specified device")

        print("************ Generator weights restored! **************")
        netG.eval()

    for param in netG.parameters():
            param.requires_grad = False

    criterion = nn.MSELoss()
    z_prior = torch.zeros(batch_size,nz,1,1,requires_grad=True,device=device)

    optimizerZ = optim.RMSprop([z_prior], lr=5e-3)
    lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizerZ, gamma=0.9999)
    real_cpu = test_images.to(device)

    for iters in range(nIter):
        # z2 = torch.clamp(z_prior,-1.,1.)
        fake = 0.5*netG(z_prior)+0.5
        fake = nnf.interpolate(fake, size=(d_x, d_y), mode='bilinear', align_corners=False)
        y_gt,y_est = cs_measure(real_cpu,fake,phi_test.to(device))
        cost = criterion(y_gt,y_est)
        optimizerZ.zero_grad()
        cost.backward()
        optimizerZ.step()
        if (iters+1)%100==0:
            lr_scheduler.step()

        if (iters % 500 == 0):

            with torch.no_grad():
                fake = 0.5*netG(z_prior).detach().cpu()+0.5
                fake = nnf.interpolate(fake, size=(d_x, d_y), mode='bilinear', align_corners=False)

            G_imgs = np.transpose(fake.detach().cpu().numpy(),[0,2,3,1])
            merged = merge(G_imgs,[n_img_plot_x,n_img_plot_y])
            psnr0 = compare_psnr(x_test_[:,:,0],merged,data_range=1.0)

            if USE_BM3D:
                merged_clean = pybm3d.bm3d.bm3d(merged,0.25)
               # merged_clean = bm3d(merged,psd)
                psnr1 = compare_psnr(x_test_[:,:,0],merged_clean,data_range=1.0)
                display = merged_clean
                print('Iter: {:d}, Error: {:.3f}, PSNR: {:.3f}, PSNR-bm3d: {:.3f}, Current LR:{:.5f} '.format(iters,cost.item(),psnr0,psnr1,lr_scheduler.get_last_lr()[0]))
                io.imsave('{}/inv_solution_bm3d_iters_{}.png'.format(savedir,str(iters).zfill(4)),(255*merged_clean).astype(np.uint8))
            else:
                print('PSNR and reconstructions are not processed with BM3D')
                display = merged
                psnr1 = psnr0
                print('Iter: {:d}, Error: {:.3f}, PSNR: {:.3f}, Current LR:{:.5f} '.format(iters,cost.item(),psnr0,lr_scheduler.get_last_lr()[0]))
                io.imsave('{}/inv_solution_iters_{}.png'.format(savedir,str(iters).zfill(4)),(255*imgest).astype(np.uint8))
Пример #6
0
from experiment_funcs import get_experiment_noise, get_psnr, get_cropped_psnr

bv = np.load('/Users/mskirk/data/Bradshaw/bv_simulation_high_fn_171.step1.npz',
             allow_pickle=True)
imcube = bv['arr_0']

y = np.sqrt(imcube[:, :, -1])
y_cube = imcube / imcube.max()
y = y / y.max()
noise_type = 'g4w'
noise_var = y.min() / 4.  # Noise variance
noise_cube_var = y_cube.min() / 4
seed = 0  # seed for pseudorandom noise realization

noise, psd, kernel = get_experiment_noise(noise_type, noise_var, seed, y.shape)
noise_cube, psd_cube, kernel_cube = get_experiment_noise(
    noise_type, noise_cube_var, seed, y_cube.shape)

# Generate noisy image corrupted by additive spatially correlated noise
# with noise power spectrum PSD
z = (np.atleast_3d(y) + np.atleast_3d(noise))

# Call BM3D With the default settings.
y_est = bm3d(z, psd)

# Note: For white noise, you may instead of the PSD
# also pass a standard deviation
# y_est = bm3d(z, sqrt(noise_var));

psnr = get_psnr(y, y_est)
Пример #7
0
def main():
    # Experiment specifications

    # The multichannel example data is acquired from: http://www.bic.mni.mcgill.ca/brainweb/
    # (C.A. Cocosco, V. Kollokian, R.K.-S. Kwan, A.C. Evans,
    #  "BrainWeb: Online Interface to a 3D MRI Simulated Brain Database"
    # NeuroImage, vol.5, no.4, part 2/4, S425, 1997
    # -- Proceedings of 3rd International Conference on Functional Mapping of the Human Brain, Copenhagen, May 1997.
    data_name = 'brainslice.mat'
    table_name = 'slice_sample'

    # Load noise-free image
    # Data should be in same shape as with Image.open, but channel count can be any (M x N x channels)
    # Noise-free data should be between 0 and 1.
    y = loadmat(data_name)[table_name]
    # Possible noise types to be generated 'gw', 'g1', 'g2', 'g3', 'g4', 'g1w',
    # 'g2w', 'g3w', 'g4w'.
    noise_type = 'g2'
    noise_var = 0.02  # Noise variance
    seed = 0  # seed for pseudorandom noise realization

    # Generate noise with given PSD
    noise, psd, kernel = get_experiment_noise(noise_type, noise_var, seed,
                                              y.shape)
    # N.B.: For the sake of simulating a more realistic acquisition scenario,
    # the generated noise is *not* circulant. Therefore there is a slight
    # discrepancy between PSD and the actual PSD computed from infinitely many
    # realizations of this noise with different seeds.

    # Generate noisy image corrupted by additive spatially correlated noise
    # with noise power spectrum PSD
    z = np.atleast_3d(y) + np.atleast_3d(noise)

    # Call BM3D With the default settings.
    # The call is identical to that of the grayscale BM3D.
    y_est = bm3d(z, psd)

    # To include refiltering:
    # y_est = bm3d(z, psd, 'refilter');

    # For other settings, use BM3DProfile.
    # profile = BM3DProfile(); # equivalent to profile = BM3DProfile('np');
    # profile.gamma = 6;  # redefine value of gamma parameter
    # y_est = bm3d(z, psd, profile);

    # Note: For white noise, you may instead of the PSD
    # also pass a standard deviation
    # y_est = bm3d(z, sqrt(noise_var));

    # Instead of passing a singular PSD, you may also pass equal number of PSDs to the channels:
    # y_est = bm3d(z, np.concatenate((psd1, psd2, psd3, psd4, psd5), 2))
    # y_est = bm3d(z, [sigma1, sigma2, sigma3, sigma4, sigma5])

    psnr = get_psnr(y, y_est)
    print("PSNR:", psnr)

    # PSNR ignoring 16-pixel wide borders (as used in the paper), due to refiltering potentially leaving artifacts
    # on the pixels near the boundary of the image when noise is not circulant
    psnr_cropped = get_cropped_psnr(y, y_est, [16, 16])
    print("PSNR cropped:", psnr_cropped)

    # Ignore values outside range for display (or plt gives an error for multichannel input)
    y_est = np.minimum(np.maximum(y_est, 0), 1)
    z_rang = np.minimum(np.maximum(z, 0), 1)
    plt.title("y, z, y_est")
    disp_mat = np.concatenate([
        np.concatenate(
            (y[:, :, i], np.squeeze(z_rang[:, :, i]), y_est[:, :, i]), axis=1)
        for i in range(y_est.shape[2])
    ],
                              axis=0)

    plt.imshow(disp_mat)
    plt.show()