Пример #1
0
def main():
    args=sys.argv[1:]
    if len(args)==2:
        pagename=args.pop(0)
        workdir=os.sep.join([os.getcwd(),pagename])
    else:
        if os.path.exists("pagedata.txt"):
            workdir="."
        else:
            pagename="www.example.com"
            workdir=os.sep.join([os.getcwd(),pagename])
    try:
        mode=args.pop()
    except:
        mode="design"
    if not mode in ["design","export","help"]:
        print("invalid command:",mode)
        return
    print("Working directory:",workdir)
    if not os.path.exists(workdir):
        print("Populating directory with skeleton files")
        shutil.copytree(os.sep.join([mydir,"skeleton"]),workdir)
        shutil.copy(os.sep.join([mydir,"template.txt"]),os.sep.join([workdir,"pagedata.txt"]))
    else:
        for x in ["static","templates"]:
            shutil.rmtree(os.sep.join([workdir,x]))
            shutil.copytree(os.sep.join([mydir,"skeleton",x]),os.sep.join([workdir,x]))
        shutil.copy(os.sep.join([mydir,"skeleton","designs","default.html"]),os.sep.join([workdir,"designs","default.html"]))
    os.chdir(workdir)
    if mode=="design":
        admin.srv()
    elif mode=="help":
        print(usage)
    else:#export
        export.export()
Пример #2
0
def main(system_env, system, setup, ep, outputfn, network_name, batch_size):
    if system == 'cartpole_obs':
        from networks.mpnet_cartpole_obs import MPNet
    elif system == 'acrobot_obs':
        from networks.mpnet_acrobot_obs import MPNet
    elif system == 'quadrotor_obs':
        from networks.mpnet_quadrotor_obs import MPNet
    else:
        print("Unrecognized model name")
        raise
    mpnet = MPNet(ae_input_size=32,
                  ae_output_size=output_size[system],
                  in_channels=in_channel[system],
                  state_size=state_size[system]).cuda()
    mpnet.load_state_dict(
        torch.load('output/{}/{}/{}/ep{}.pth'.format(system, setup,
                                                     network_name, ep)))
    mpnet.train()
    # mpnet.eval()
    Path("exported/output/{}".format(system)).mkdir(exist_ok=True)

    export(mpnet,
           setup=setup,
           system_env=system_env,
           system=system,
           exported_path="exported/output/{}/{}".format(system, outputfn),
           batch_size=batch_size)
Пример #3
0
def main(system_env, system, setup, ep, outputfn):

    # mpnet = MPNet(
    #     ae_input_size=32,
    #     ae_output_size=1024,
    #     in_channels=1,
    #     state_size=state_size[system]).cuda()
    mpnet = KMPNet(total_input_size=8,
                   AE_input_size=32,
                   mlp_input_size=136,
                   output_size=4,
                   CAE=Encoder,
                   MLP=MLP)
    mpnet.cuda()
    # mpnet.load_state_dict(torch.load('/media/arclabdl1/HD1/YLmiao/results/KMPnet_res/cartpole_obs_lr0.001000_SGD_step_100/kmpnet_epoch_9950_direction_0_step_100.pkl'.format(system, setup, ep)))
    # load_func(mpnet, '/media/arclabdl1/HD1/YLmiao/results/KMPnet_res/cartpole_obs_lr0.001000_SGD_step_100/kmpnet_epoch_9950_direction_0_step_100.pkl')
    # load_func(mpnet, '/media/arclabdl1/HD1/YLmiao/results/KMPnet_res/cartpole_obs_3_lr0.001000_Adagrad_step_200/kmpnet_epoch_2600_direction_0_step_200.pkl')

    load_func(
        mpnet,
        '/media/arclabdl1/HD1/YLmiao/results/KMPnet_res/cartpole_obs_3_lr0.001000_Adagrad_loss_l1_smooth_step_200/kmpnet_epoch_9950_direction_0_step_200.pkl'
    )

    mpnet.train()
    # mpnet.eval()
    export(mpnet,
           setup=setup,
           system_env=system_env,
           system=system,
           exported_path="exported/output/{}/{}".format(system, outputfn))
Пример #4
0
def main(system_env, system, setup, ep, from_exported, network_type, outputfn):
    if from_exported:
        from exported.export_mpnet_external_small_model import KMPNet, load_func, Encoder, MLP
        mpnet = KMPNet(total_input_size=8, AE_input_size=32, mlp_input_size=40, output_size=4, CAE=Encoder, MLP=MLP, loss_f=None).cuda()
        load_func(mpnet, '/media/arclabdl1/HD1/YLmiao/results/KMPnet_res/cartpole_obs_4_lr0.010000_Adagrad_step_200/kmpnet_epoch_3150_direction_0_step_200.pkl')
        costnet = CostNet(ae_input_size=32, ae_output_size=32, in_channels=1, state_size=state_size[system], encoder=mpnet.encoder.cuda()).cuda()

    else:
        if system == 'quadrotor_obs':
            from networks.mpnet_quadrotor_obs import MPNet
        elif system == 'cartpole_obs':
            from networks.mpnet_cartpole_obs import MPNet
        elif system == 'acrobot_obs':
            from networks.mpnet_acrobot_obs import MPNet
        elif system == 'car_obs':
            from networks.mpnet_car_obs import MPNet


        mpnet = MPNet(
            ae_input_size=32, 
            ae_output_size=output_size[system], 
            in_channels=in_channel[system], 
            state_size=state_size[system]).cuda()
        costnet = CostNet(ae_input_size=32, ae_output_size=output_size[system], in_channels=in_channel[system], state_size=state_size[system], encoder=mpnet.encoder).cuda()
    
    costnet.load_state_dict(torch.load('output/{}/{}/{}/ep{}.pth'.format(system, setup, network_type, ep)))
    costnet.eval()
    # costnet.mlp.eval()
    # costnet.mlp.dropout = False
    Path("exported/output/{}".format(system)).mkdir(exist_ok=True)

    export(costnet, setup=setup, system_env=system_env, system=system, exported_path="exported/output/{}/{}".format(system, outputfn))
Пример #5
0
def orbibuild_project(prjpath, app_args, buildid, recipes_use=None):
    if not os.path.isdir(prjpath):
        raise ValueError("Incorrect path '" + prjpath + "'")
    prjpath = os.path.abspath(prjpath) + "/"

    builddir = prjpath + "/build"
    if not os.path.exists(builddir):
        os.makedirs(builddir)

    if __get_build_id(builddir) == buildid:
        return
    __set_build_id(builddir, buildid)

    recipes = None
    try:
        recipes = Recipes(prjpath, recipes_use)
    except ValueError as e:
        print(e.args[0])
        build_break(prjpath)

    if len(recipes.list):
        export(prjpath, recipes.list[0])
    for recipe in recipes.list:
        __info_recipe(recipe)
        deps_travel(prjpath, __copy_bins)
        __compile(prjpath, app_args, recipe, buildid)
        __linking(prjpath, recipe)
        __copy_files(prjpath, recipe)
def export_to_excel(settings):
    filename_raw = settings['FEED_URI']
    filename = filename_raw[0:filename_raw.index('.')]

    excel_filename = f'{filename}.xlsx'
    export(filename_raw, excel_filename)
    os.remove(filename_raw)
    return excel_filename
Пример #7
0
def main():
    """ The main function of the script
        This function run as a starting point of the program
    """
    # Handle args first
    import export

    export.export("./submissions", "./", "rubric-01.md")
Пример #8
0
def main(system_env, system, setup, ep):
    mpnet = MPNet(
        ae_input_size=32, 
        ae_output_size=1024, 
        in_channels=1, 
        state_size=state_size[system]).cuda()
    costnet = CostNet(ae_input_size=32, ae_output_size=1024, in_channels=1, state_size=4, encoder=mpnet.encoder).cuda()
    costnet.load_state_dict(torch.load('output/{}/{}/cost_so_far/ep{}.pth'.format(system, setup, ep)))
    costnet.eval()
    export(costnet, setup=setup, system_env=system_env, system=system, exported_path="exported/output/{}/cost_so_far_10k.pt".format(system))
Пример #9
0
def main():
    manifest_path = DEF_MANIFEST
    input_path = DEF_INPUT_PATH
    output_path = DEF_OUTPUT_PATH
    output_formats = DEF_OUTPUT_FORMATS
    ttx_output = DEF_TTX_OUTPUT
    dev_ttx_output = DEF_DEV_TTX
    delim_codepoint = DEF_DELIM_CODEPOINT

    no_lig = DEF_NO_LIG
    no_vs16 = DEF_NO_VS16
    nfcc = DEF_NFCC

    try:
        opts, _ = getopt.getopt(
            sys.argv[1:], 'hm:i:o:F:d:',
            ['help', 'ttx', 'dev-ttx', 'no-lig', 'no-vs16', 'nfcc'])
        for opt, arg in opts:
            if opt in ['-h', '--help']:
                print(HELP)
                sys.exit()
            elif opt == '-m':
                manifest_path = arg
            elif opt == '-i':
                input_path = arg
            elif opt == '-o':
                output_path = arg
            elif opt == '-F':
                output_formats = arg.split(',')
            elif opt == '-d':
                delim_codepoint = arg
            elif opt == '--ttx':
                ttx_output = True
            elif opt == '--dev-ttx':
                dev_ttx_output = True
            elif opt == '--no-lig':
                no_lig = True
            elif opt == '--no-vs16':
                no_vs16 = True
            elif opt == '--nfcc':
                nfcc = True

    except Exception:
        print(HELP)
        sys.exit(2)
    try:
        export(manifest_path, input_path, output_path, output_formats,
               delim_codepoint, ttx_output, dev_ttx_output, no_lig, no_vs16,
               nfcc)

    except Exception as e:
        log.out(f'!!! {e}', 31)
        raise e  ######################## TEMP
        sys.exit(1)
    log.out('All done', 35)
def main():
    x = numpy.zeros((1, 3, 32, 32), dtype=numpy.float32)

    # disable rename_tensors version
    export(Model(use_bn=True), x, filename='output/A.onnx')
    export(Model(use_bn=False), x, filename='output/B.onnx')

    # disable check model in onnx_chainer.export
    checker.check_model = lambda x: None

    onnx_chainer.export(Model(use_bn=True), x, filename='output/C.onnx')
    onnx_chainer.export(Model(use_bn=False), x, filename='output/D.onnx')
Пример #11
0
def main():
    parser = build_parser()
    options = parser.parse_args()

    ps_spec = options.ps_hosts.split(",")
    worker_spec = options.worker_hosts.split(",")

    # Get the number of workers.
    num_workers = len(worker_spec)

    cluster = tf.train.ClusterSpec({"ps": ps_spec, "worker": worker_spec})
    if options.job_name == "ps":
        print("Start parameter server %d" % (options.task_index))
        server = tf.train.Server(cluster,
                                 job_name=options.job_name,
                                 task_index=options.task_index)
        server.join()
        return

    check_opts(options)

    style_target = get_img(options.style)

    content_targets = _get_files(options.train_path)
    random.shuffle(content_targets)

    kwargs = {
        "epochs": options.epochs,
        "print_iterations": options.checkpoint_iterations,
        "batch_size": options.batch_size,
        "save_path": options.checkpoint_dir,
        "learning_rate": options.learning_rate,
        "test_image": options.test
    }

    args = [
        cluster, options.task_index, options.num_gpus, options.limit_train,
        content_targets, style_target, options.content_weight,
        options.style_weight, options.tv_weight, options.vgg_path
    ]

    preds, losses, i, epoch = optimize(*args, **kwargs)
    style_loss, content_loss, tv_loss, loss = losses

    print('Epoch %d, Iteration: %d, Loss: %s' % (epoch, i, loss))
    to_print = (style_loss, content_loss, tv_loss)
    print('style: %s, content:%s, tv: %s' % to_print)
    if options.task_index == 0:
        export.export(options.checkpoint_dir, (1, 512, 512, 3))
    ckpt_dir = options.checkpoint_dir
    cmd_text = 'python evaluate.py --checkpoint %s ...' % ckpt_dir
    print("Training complete. For evaluation:\n    `%s`" % cmd_text)
Пример #12
0
 def exportCsv(self):
     """ Export the current model as a CSV file.
     """
     # Check a database is opened.
     if model.the_engine is None:
         return
     name = self.current_url.split('/')[-1].split('.')[0]
     # First ask the user for the file to save to.
     fname = str(QtGui.QFileDialog.getSaveFileName(self, 'export as CSV', '%s.csv' % name, '*.csv'))
     if fname == '':
         return
     # Then export the database
     export(fname, model.the_engine)
Пример #13
0
def _run(config: Configuration) -> str:
    file_path = config.get_api_file_output_path()

    while 1 == 1:
        project_data = get_project_data(config)

        if len(project_data) == 0:
            # This occurs when there are no more results "above" the last id.
            break

        export(file_path, project_data)

        config.last_id = project_data[-1]["id"]

    return file_path
Пример #14
0
def exportmain():
    export.export(values.pitch)
    b = tkinter.Text(root, height=1, font="font, 20", width=34)
    b.insert(tkinter.INSERT, "Your file was succesfully exported")
    b.config(state=tkinter.DISABLED, bg="#f0f0f0", bd=0)
    b.pack()
    b = tkinter.Text(root, height=1, font="font, 15", width=63)
    b.insert(
        tkinter.INSERT,
        "It should be located under in the exports folder of the program")
    b.config(state=tkinter.DISABLED, bg="#f0f0f0", bd=0)
    b.pack()
    b = tkinter.Text(root, height=1, font="font, 15", width=41)
    b.insert(tkinter.INSERT, "This is usually C:/Program Files(x86)/StS")
    b.config(state=tkinter.DISABLED, bg="#f0f0f0", bd=0)
    b.pack()
Пример #15
0
def rnn(x_data, y_data):

    x_train = np.array(x_data[:int(len(x_data) * TRAINING_PERCENTAGE)])
    y_train = np.array(y_data[:int(len(y_data) * TRAINING_PERCENTAGE)])

    x_test = np.array(x_data[int(len(x_data) * TRAINING_PERCENTAGE):])
    y_test = np.array(y_data[int(len(y_data) * TRAINING_PERCENTAGE):])

    maxFeatures = 15500

    model = Sequential()
    model.add(LSTM(200))
    model.add(Dense(1, activation=LeakyReLU(alpha=0.3)))

    model.compile(loss='mean_squared_error', optimizer='adam', metrics=[crps])

    history = model.fit(x_train,
                        y_train,
                        batch_size=BATCH_SIZE,
                        epochs=EPOCHS,
                        validation_data=(x_test, y_test))

    # graph(history, to_file='images/rnn.png')

    scores = model.evaluate(x_test, y_test)
    print(f'CRPS RNN: {scores[1]}')

    df = export(x_train, x_test, model)

    print(df)
Пример #16
0
def main(clas):
    opts = [opt for opt in clas if opt.startswith("-")]
    args = [arg for arg in clas if not arg.startswith("-")]
    if "-h" in opts:
        print(help)
    elif "-c" in opts:
        import recommendedPercents as rp
        try:
            rp.budgetPercents(float(args[0]))
        except IndexError:
            errMessage()
    elif "-p" in opts:
        import actualPercents as ap
        try:
            ap.budgetPercents(month2file(args[0]))
        except IndexError:
            errMessage()
    elif "-i" in opts:
        import interestCalc as ic
        try:
            ic.calc(args[0], int(args[1]), int(args[2]), float(args[3]))
        except IndexError:
            errMessage()
    elif "-a" in opts:
        import addEntry as ae
        try:
            ae.add(month2file(args[0]), args[1], args[2], args[3],
                   float(args[4]))
        except IndexError:
            errMessage()

    elif "-e" in opts:
        import export as e
        try:
            e.export(month2file(args[0]))
        except IndexError:
            errMessage()

    elif "-v" in opts:
        import vis as v
        try:
            v.stack(args[0])
        except IndexError:
            errMessage()

    else:
        print(help)
Пример #17
0
 def default(self,*a,**kw):
     print("params:",a,kw)
     if a[0] in ["static","files","preview"]:
         if a[0]=="files":
             fname="files/"+"/".join([x.split("?")[0] for x in a[1:]])
         elif a[0]=="static":
             fname="static/"+"/".join(a[1:])
         else:
             fname="index.html"
             export.export()
         mtype=mimetypes.guess_type(fname)[0]
         if mtype is None and a[-1].split(".")[-1]=="less":mtype="text/css"
         print(fname,mtype)
         cherrypy.response.headers['Content-Type']= mtype
         return open(fname,"rb")
     elif a[0]=="api":
         return self.api(a[1:],kw)
Пример #18
0
 def exportFunc(self):
     self.input2 = self.textbox2.text()
     if self.output2.blockCount() == 1:
         return
     if self.input2 == "":
         self.errorPop("You must enter a file name!",1)
         return
     ex = export.export()
     ex.runExport(self.theOutput, self.input, self.input2)
Пример #19
0
def ffnn(x_data, y_data):

    x_data = flatten(x_data)
    numnodes = len(x_data[0])
    
    x_train = np.array(x_data[: int(len(x_data) * TRAINING_PERCENTAGE)])
    y_train = np.array(y_data[: int(len(y_data) * TRAINING_PERCENTAGE)])
    
    x_test = np.array(x_data[int(len(x_data) * TRAINING_PERCENTAGE):])
    y_test = np.array(y_data[int(len(y_data) * TRAINING_PERCENTAGE):])
 
    model = Sequential([
        Dense(numnodes, input_dim=len(x_train[0])),
        LeakyReLU(alpha=0.3),
        BatchNormalization(),
        Dropout(0.3),

        Dense(numnodes*2),
        LeakyReLU(alpha=0.3),
        BatchNormalization(),
        Dropout(0.3),

        Dense(numnodes*2),
        LeakyReLU(alpha=0.3),
        BatchNormalization(),
        Dropout(0.3),
        
        Dense(1),
        LeakyReLU(alpha=0.3)
    ])

    model.compile(
        loss='mean_squared_error',
        optimizer='adam',
        metrics=[crps]
    )

    model.summary()

    history = model.fit(
        x_train, y_train,
        batch_size=BATCH_SIZE,
        epochs=EPOCHS,
        validation_data=(x_test, y_test),
        verbose=2
    )

    # graph(history, to_file='images/ffnn.png')

    #Evaluating the model
    scores = model.evaluate(x_test, y_test, verbose=2)
    print(f'CRPS FFNN: {scores[1]}')

    df = export(x_train, x_test, model)

    print(df)
Пример #20
0
def cnn(x_data, y_data):

    x_train = np.array(x_data[:int(len(x_data) * TRAINING_PERCENTAGE)])
    x_train = x_train.reshape(len(x_train), 22, 38, 1)
    y_train = np.array(y_data[:int(len(y_data) * TRAINING_PERCENTAGE)])

    x_test = np.array(x_data[int(len(x_data) * TRAINING_PERCENTAGE):])
    x_test = x_test.reshape(len(x_test), 22, 38, 1)
    y_test = np.array(y_data[int(len(y_data) * TRAINING_PERCENTAGE):])

    weight_decay = 1e-4

    model = Sequential([
        Conv2D(32, (3, 3),
               activation=LeakyReLU(alpha=0.25),
               input_shape=(len(x_data[0]), len(x_data[0][0]), 1),
               padding='same',
               kernel_regularizer=regularizers.l2(weight_decay)),
        BatchNormalization(),
        Conv2D(32, (3, 3),
               activation=LeakyReLU(alpha=0.25),
               kernel_regularizer=regularizers.l2(weight_decay)),
        Dropout(0.3),
        MaxPooling2D((2, 2)),
        Conv2D(64, (3, 3),
               activation=LeakyReLU(alpha=0.25),
               padding='same',
               kernel_regularizer=regularizers.l2(weight_decay)),
        BatchNormalization(),
        Conv2D(64, (3, 3),
               activation=LeakyReLU(alpha=0.25),
               kernel_regularizer=regularizers.l2(weight_decay)),
        Dropout(0.3),
        MaxPooling2D((2, 2)),
        Flatten(),
        Dense(64, activation=LeakyReLU(alpha=0.25)),
        Dense(1, activation=LeakyReLU(alpha=0.25)),
    ])

    model.compile(optimizer='adam', loss='mean_squared_error', metrics=[crps])

    history = model.fit(x_train,
                        y_train,
                        epochs=EPOCHS,
                        validation_data=(x_test, y_test))

    # graph(history, to_file='images/cnn.png')

    #Evaluating the model
    scores = model.evaluate(x_test, y_test, verbose=2)
    print(f'CRPS CNN: {scores[1]}')

    df = export(x_train, x_test, model)

    print(df)
Пример #21
0
    def download(self, file_bool):
        global out_db
        temp_name, mimetype = export.export(out_db, file_bool)
        path = os.path.join(current_app.root_path, temp_name)

        def generate():
            with open(path) as f:
                yield from f
            os.remove(path)

        r = current_app.response_class(generate(), mimetype=mimetype)
        r.headers.set('Content-Disposition', 'attachment', filename=temp_name)
        return r
Пример #22
0
def main(system_env, system, setup, ep, outputfn):
    if system == 'cartpole_obs':
        from networks.mpnet_cartpole_obs_branch import MPNet
    elif system == 'acrobot_obs':
        from networks.mpnet_acrobot_obs import MPNet
    else:
        print("Unrecognized model name")
        raise
    mpnet = MPNet(ae_input_size=32,
                  ae_output_size=32,
                  in_channels=1,
                  state_size=state_size[system]).cuda()
    mpnet.load_state_dict(
        torch.load('output/{}/{}/mpnet_branch/ep{}.pth'.format(
            system, setup, ep)))
    mpnet.train()
    # mpnet.eval()
    export(mpnet,
           setup=setup,
           system_env=system_env,
           system=system,
           exported_path="exported/output/{}/{}".format(system, outputfn))
Пример #23
0
def main(system_env, system, setup, ep, from_exported):
    if from_exported:
        from exported.export_mpnet_external_small_model import KMPNet, load_func, Encoder, MLP
        mpnet = KMPNet(total_input_size=8,
                       AE_input_size=32,
                       mlp_input_size=40,
                       output_size=4,
                       CAE=Encoder,
                       MLP=MLP,
                       loss_f=None).cuda()
        load_func(
            mpnet,
            '/media/arclabdl1/HD1/YLmiao/results/KMPnet_res/cartpole_obs_4_lr0.010000_Adagrad_step_200/kmpnet_epoch_3150_direction_0_step_200.pkl'
        )
        costnet = CostNet(ae_input_size=32,
                          ae_output_size=32,
                          in_channels=1,
                          state_size=4,
                          encoder=mpnet.encoder.cuda()).cuda()

    else:
        mpnet = MPNet(ae_input_size=32,
                      ae_output_size=1024,
                      in_channels=1,
                      state_size=state_size[system]).cuda()
        costnet = CostNet(ae_input_size=32,
                          ae_output_size=1024,
                          in_channels=1,
                          state_size=4,
                          encoder=mpnet.encoder).cuda()
    costnet.load_state_dict(
        torch.load('output/{}/{}/cost_transit/ep{}.pth'.format(
            system, setup, ep)))
    costnet.eval()
    export(costnet,
           setup=setup,
           system_env=system_env,
           system=system,
           exported_path="exported/output/{}/cost_10k.pt".format(system))
Пример #24
0
def delete():
    deleting = True
    while deleting:
        query = input('Search for NAME or PID: ').lower()
        if query == 'name' or query == 'pid':
            uinput = input('Type the {}: '.format(query)).lower()
            conn = sqlite3.connect('person.db')
            c = conn.cursor()
            c.execute('SELECT * FROM person WHERE {} = "{}"'.format(
                query, uinput))
            p = c.fetchone()
            conn.close()

            if p:
                person = Person.Person(p[0], p[1], p[2], p[3], p[4])
                print('Please confirm if you want to delete this entry:')
                print('\n')
                print(person)
                print('\n')
                prompt = input('Confirm? y/n: ').lower()

                if prompt == 'y':
                    export.export('d', 'deleted-data.csv', person)

                    conn = sqlite3.connect('person.db')
                    c = conn.cursor()
                    c.execute('DELETE FROM person WHERE {} = "{}"'.format(
                        query, uinput))
                    conn.commit()
                    conn.close()
                    print('Entry deleted with success.')
                    deleting = False

            else:
                print('Entry not found in database.')
                prompt = input('Do you want to try again? y/n: ')
                if prompt != 'y':
                    deleting = False
Пример #25
0
def download_admin_report():
    if not flask_login.current_user.is_admin:
        return login_manager.unauthorized()
    db = get_db()

    events = list(model.get_events(db))
    attendees = list(model.get_attendees(db))
    sort_attendees_by_name(attendees)
    users = model.get_attendee_count_by_registrators(db)
    sort_users_by_name(users)

    fname = export.export(attendees, events, users)
    send_file(fname, as_attachment=True)
    return send_file(fname, as_attachment=True)
Пример #26
0
 def save(self):
     f=open(pagedata,"w")
     pp2=pprint.PrettyPrinter(stream=f)
     pp2.pprint(self)
     f.flush()
     export.export()
Пример #27
0
def main():
    print('Welcome to PersonDB!\n')
    log = True
    logged = False
    while log:
        prompt = input(
            'Type LOGIN to log in, CREATE to create a new user or EXIT to quit the program: '
        ).lower()
        if prompt == 'login':
            try:
                logged = login.login()
                if logged:
                    log = False
            except Exception as e:
                error_report(e)

        elif prompt == 'create':
            try:
                login.create()
            except Exception as e:
                error_report(e)

        elif prompt == 'exit':
            log = False

        else:
            print('Wrong input.')

    if logged:
        run = True
        while run:
            print('Type CREATE to create a new entry\n' +
                  'Type READ to search the database\n' +
                  'Type UPDATE to update a entry\n' +
                  'Type DELETE to remove a entry\n' +
                  'Type EXPORT to export the db to a csv file\n' +
                  'Type EXIT to exit')

            command = input("Command: ").lower()
            print('\n')

            if command == 'create':
                try:
                    CRUD.create()
                    print('\n')
                except Exception as e:
                    error_report(e)

            elif command == 'read':
                try:
                    CRUD.read()
                    print('\n')
                except Exception as e:
                    error_report(e)

            elif command == 'update':
                try:
                    CRUD.update()
                    print('\n')
                except Exception as e:
                    error_report(e)

            elif command == 'delete':
                try:
                    CRUD.delete()
                    print('\n')
                except Exception as e:
                    error_report(e)

            elif command == 'export':
                try:
                    export.export('a', 'exported-data.csv', '')
                    print('\n')
                except Exception as e:
                    error_report(e)

            elif command == 'exit':
                run = False

            else:
                print('Wrong input.')
                prompt = input('Do you want to try again? y/n: ')
                if prompt == 'n':
                    creating = False
Пример #28
0
def mousePressed(event, data):
    # use event.x and event.y

    #splash screen
    if data.screenMode == 1:
        if event.x > 250 and event.x < 450 and event.y > 530 and event.y < 560:
            data.screenMode = 2
            data.myname = data.typingName
            data.name = data.name

    #chating mode
    elif data.screenMode == 2:
        #select line
        for i in range(len(data.text) - 2, -1, -1):
            currText = data.text[i]
            y0 = currText.y0
            y1 = currText.y1
            if y0 < 0:
                break
            if data.mouseX >= 200 and data.mouseX <= 700 and data.mouseY <= y1 and data.mouseY >= y0:
                if currText.selected == True:
                    currText.selected = False
                else:
                    currText.selected = True

        if data.mouseX > 260 and data.mouseX < 700 and data.mouseY < 700 and data.mouseY > 600:
            data.mousejustchanged = True
        elif data.mousePosition == "filemode0":
            filename, filepath = data.fileList[0]
            dir_path = os.path.dirname(os.path.realpath(__file__))
            dir_path = dir_path + "/" + filename
            updownload.download(filename, dir_path)
        elif data.mousePosition == "filemode1":
            filename, filepath = data.fileList[1]
            dir_path = os.path.dirname(os.path.realpath(__file__))
            dir_path = dir_path + "/" + filename
            updownload.download(filename, dir_path)
        elif data.mousePosition == "filemode2":
            filename, filepath = data.fileList[2]
            dir_path = os.path.dirname(os.path.realpath(__file__))
            dir_path = dir_path + "/" + filename
            updownload.download(filename, dir_path)
        elif data.mousePosition == "textmode0":
            print("trash")
            data.currentMode = 0
            for i in range(len(data.text) - 2, -1, -1):
                currText = data.text[i]
                if currText.selected == True:
                    currText.mode = data.currentMode
        elif data.mousePosition == "textmode1":
            print("report")
            data.currentMode = 1
            for i in range(len(data.text) - 2, -1, -1):
                currText = data.text[i]
                if currText.selected == True:
                    currText.mode = data.currentMode
        elif data.mousePosition == "textmode2":
            print("note")
            data.currentMode = 2
            for i in range(len(data.text) - 2, -1, -1):
                currText = data.text[i]
                if currText.selected == True:
                    currText.mode = data.currentMode
        elif data.mousePosition == "exportNotes":
            print("export")
            newTxtString = export.export(data.text)
            export.exportToTxt(newTxtString)
        elif data.mousePosition == "uploadFile":
            print("click uploadFile")
            filename = filedialog.askopenfilename(
                initialdir="/",
                title="Select file",
                filetypes=(("jpeg files", "*.jpg"), ("all files", "*.*")))
            print(filename)
            name = filename.split("/")[-1]
            print(name)
            if len(filename) > 0 and len(name) > 0:

                data.fileList.append((name, filename))
                updownload.upload(name, filename)

        if data.mousePosition == "mode":
            print("mode")
Пример #29
0
from datetime import datetime
from scraper import scrape
from export import export
from emails import send_email

today = datetime.today().strftime('%Y-%m-%d')

# url = "https://www.car.gr/classifieds/cars/?offer_type=sale&rg=2&significant_damage=t&st=private"
url = "https://www.car.gr/classifieds/cars/?make=18"  # for testing purposes

scrape(url)
export('cars', today)
send_email(today, '*****@*****.**')
Пример #30
0
def Restrict(f_name,gNum,gene,lag,blstInfo,
             beg,end,cutSites,org,no_selection,debug):

    geneStr = str(gene.seq).upper()
##    geneComp = str(gene.seq.reverse_complement().upper())
    geneComp = str(gene.seq.complement().upper())

    if lag == 'Ambiguous':

        # Create one file for coding oligos
        oligos = dna_parsing.main(geneStr,beg,end,cutSites,lag,
                                  org,no_selection,debug)
        if oligos and set(oligos) != set([False]):
            export.export(oligos,blstInfo,lag,gene,gNum,f_name,org)
        else:
            export.export(oligos,blstInfo,lag,gene,gNum,f_name,org,sp=True)

        # And one file for the template oligos
        ##oligos = dna_parsing.main(geneComp,beg,end,cutSites,lag,
        oligos = dna_parsing.main(geneStr,beg,end,cutSites,lag,
                                  org,no_selection,debug,b=True)
        if oligos and set(oligos) != set([False]):
            export.export(oligos,blstInfo,lag,gene,gNum,f_name,org,b=True)
        else:
            export.export(oligos,blstInfo,lag,gene,gNum,f_name,org,b=True,
                          sp=True)

    else:
        # Choose the sequence to use based on the lagging strand
##        if lag == 'Coding':
##            sequence = geneStr
##        else:
##            sequence = geneComp
        sequence = geneStr
            
        oligos = dna_parsing.main(sequence,beg,end,cutSites,lag,
                                  org,no_selection,debug)
        if oligos and set(oligos) != set([False]):
            export.export(oligos,blstInfo,lag,gene,gNum,f_name,org)
        else:
            export.export(oligos,blstInfo,lag,gene,gNum,f_name,org,sp=True)
Пример #31
0
    ops, wraps = ['conv','gemm','pool'], [sc.templates.Conv, sc.templates.GEMM, sc.templates.Pool]
    ops = [wrap for operation, wrap in zip(ops, wraps) if getattr(args, operation)]

    # Done
    return (args.database, args.device, ops, args.nsamples)

def cuda_environment(device):
    platforms = sc.driver.platforms()
    devices = [d for platform in platforms for d in platform.devices]
    device = devices[device]
    context = sc.driver.Context(device)
    stream = sc.driver.Stream(context)
    return device, context, stream
    
if __name__ == "__main__":
    # Get arguments
    database, device, operations, nsamples = parse_arguments()
    
    # Initialize CUDA environment
    init_cuda = lambda: cuda_environment(device)
    
    # Run the auto-tuning
    for OpType in operations:
        print("----------------")
        print('Now tuning {}:'.format(OpType.id))
        print("----------------")
        X, Y = dataset.benchmarks(OpType, nsamples, init_cuda)
        model = regression.train(OpType, X, Y)
        kernels = regression.prune(OpType, model, init_cuda)
        export(database, kernels, model, OpType.id, init_cuda)
Пример #32
0
    print(dataset_t)
    the_create_model = functools.partial(create_model,
                                         half_float=args.half,
                                         padding=(args.image_size <= 0),
                                         tile_size=args.tile_size,
                                         tta=args.tta,
                                         tta_threshold=args.tta_threshold)

    tester = Tester(create_model=the_create_model,
                    device=args.device,
                    jobs=args.jobs,
                    disable_tqdm=False)
    predictions = tester.test(args.model, dataset_t, args.output)

    if args.export:
        from export import export
        export(predictions, args.export)

    if args.eval:
        if args.data_root:
            from eval import evaluate
            iou = evaluate(predictions, dataset)
            print(
                json.dumps(iou,
                           sort_keys=True,
                           indent=4,
                           separators=(',', ': '),
                           ensure_ascii=False))
        else:
            warnings.warn("ignore eval arg")
Пример #33
0
import sys
sys.path.insert(0, './lib/')
import export

file_name = u'PipeLid.FCStd'
obj_label = u'Body'
outfile_name = u'./stl/PipeLid.stl'
imgdir = u'./img/'
x = 2000
y = 1500

export.open(file_name)
export.export(obj_label, outfile_name)
export.image(obj_label, x, y, imgdir)
export.close()
Пример #34
0
# For the testing

import sys
import os
from db_comms import connect, disconnect, exec_read, exec_write
from export import export
import ConfigParser

connect()
exec_write("insert into items values ('PC001', 'Descr001','Make1','Model1','Serial1','Date1','Store1')")
exec_write("insert into items values ('PC002', 'Descr002','Make2','Model2','Serial2','Date2','Store2')")
exec_write("insert into items values ('PC001', 'Descr003','Make3','Model3','Serial3','Date3','Store3')")
results = exec_read("select * from items")
disconnect()

print results
for line in results:
    print line[0], line[1]

'''
print "export test..."
export(results)
'''
Пример #35
0
# Manually add elmyra's directory to sys.path because
# the params.py script runs from blender context

current_dir = path.dirname(path.realpath(__file__))
sys.path.append(current_dir)

# Own module imports

import export
import render
import version

DEFAULT_RENDER_TIME = 60

def options_from_args(args):
    parser = ArgumentParser(prog="Elmyra Render Params")
    parser.add_argument("--id", required=True)
    parser.add_argument("--device", default="GPU")

    custom_args = args[sys.argv.index('--') + 1:]

    return parser.parse_args(custom_args)


options = options_from_args(sys.argv)

version.open_latest(options.id)
render.render(DEFAULT_RENDER_TIME, options.device)
export.export(options)
from argparse import ArgumentParser
from os import path

# Manually add elmyra's directory to sys.path because
# this script runs from blender context
sys.path.append(path.dirname(path.realpath(__file__)))

import common
import export
import render
import version


def parse_custom_args():
    parser = ArgumentParser(prog="Elmyra Render Params")
    parser.add_argument("--id", required=True)
    parser.add_argument("--device", default="CPU")
    parser.add_argument("--target_time", default=60)

    custom_args = sys.argv[sys.argv.index('--') + 1:]

    return parser.parse_args(custom_args)


args = parse_custom_args()

common.ensure_addons()
version.open_latest(args.id)
render.render(args.target_time, args.device)
export.export()
        title = ' '.join(item.h2.text.split())
        pubinfo = ' '.join(item.find(class_ = 'pub').text.split())
        try:
            pl = ' '.join(item.find(class_ = 'pl').text.split())
        except AttributeError:
            pl = ' '.join(item.find(class_ = 'sub-count').text.split())
        try:
            rate = float(item.find(class_ = 'rating_nums').text)
        except AttributeError:
            rate = 0
        dic = {'title': title, 'pub': pubinfo, 'read': pl, 'rate': rate}
        rankList.append(dic)

if __name__ == '__main__':
    url = "https://book.douban.com/subject_search?search_text="
    key_word = raw_input('key word:')
    tag = quote(key_word)
    url = url + tag
    rankList = []
    index = 0
    while index < 3:
        wurl = url + '&start=' + str(index * 15)
        try:
            getContent(wurl, rankList)
        except Timeout:
            continue
        except HTTPError:
            break
        index += 1
    export(rankList, key_word)
Пример #38
0
def main():
    input_path = DEF_INPUT
    manifest_path = DEF_MANIFEST
    output_path = DEF_OUTPUT

    output_naming = DEF_OUTPUT_NAMING
    output_formats = DEF_OUTPUT_FORMATS
    renderer = DEF_RENDERER
    license = DEF_LICENSE
    params_path = None

    emoji_filter = []
    emoji_filter_text = ""  # for error messaging only
    json_out = None
    json_web_out = None
    src_size = None
    num_threads = DEF_NUM_THREADS
    force_desc = False
    max_batch = DEF_MAX_BATCH
    verbose = False
    try:
        opts, _ = getopt.getopt(sys.argv[1:], 'hm:i:o:f:F:ce:j:J:q:t:r:b:p:l:',
                                ['help', 'force-desc', 'verbose'])

        for opt, arg in opts:
            if opt in ['-h', '--help']:
                print(HELP)
                sys.exit()

            # basics
            elif opt == '-m':
                manifest_path = arg
            elif opt == '-i':
                input_path = arg
            elif opt == '-o':
                output_path = arg

            # images
            elif opt == '-F':
                output_formats = arg.split(',')
            elif opt == '-f':
                output_naming = arg
            elif opt == '-r':
                renderer = arg
            elif opt == 'l':
                license = False
            elif opt == '-p':
                params_path = arg
            elif opt == '-t':
                num_threads = int(arg)
                if num_threads <= 0:
                    raise ValueError

            # JSON
            elif opt == '-j':
                json_out = arg
            elif opt == '-J':
                json_web_out = arg

            # other emoji stuff
            elif opt == '-e':
                k, v = arg.split('=')
                v = v.split(',')
                emoji_filter.append((k, v))
                emoji_filter_text = arg
            elif opt == '-q':
                t1, t2 = arg.split('x')
                src_size = int(t1), int(t2)
            elif opt == '-b':
                max_batch = int(arg)
                if max_batch <= 0:
                    raise ValueError
            elif opt == '--force-desc':
                force_desc = True

            # terminal stuff
            elif opt == '-c':
                log.use_color = False
            elif opt == '--verbose':
                verbose = True

    except Exception as e:
        log.out(f'x∆∆x {e}\n', 31)
        sys.exit(2)


# try to get all of the basic stuff and do the main execution
# -----------------------------------------------------------

    try:
        log.out(f'o∆∆o', 32)  #hello

        # validate basic input that can't be checked while in progress
        if renderer not in RENDERERS:
            raise Exception(
                f"{renderer} is not a renderer you can use in orxporter.")

        # create a Manifest
        # ie. parse the manifest file and get the information we need from it
        log.out(f'Loading manifest file...', 36)
        m = orx.manifest.Manifest(os.path.dirname(manifest_path),
                                  os.path.basename(manifest_path))
        log.out(f'- {len(m.emoji)} emoji defined.', 32)

        # filter emoji (if any filter is present)
        filtered_emoji = [e for e in m.emoji if emoji.match(e, emoji_filter)]
        if emoji_filter:
            if filtered_emoji:  # if more than 0
                log.out(
                    f'- {len(filtered_emoji)} / {len(m.emoji)} emoji match the filter you gave.',
                    34)
            else:
                raise ValueError(
                    f"Your filter ('{emoji_filter_text}') returned no results."
                )

        # ensure that descriptions are present if --force-desc flag is there
        if force_desc:
            nondesc = [
                e.get('code', str(e)) for e in filtered_emoji
                if 'desc' not in e
            ]
            if nondesc:
                raise ValueError('You have emoji without a description: ' +
                                 ', '.join(nondesc))

        # JSON out or image out
        if json_out:
            jsonutils.write_emoji(filtered_emoji, json_out)
        elif json_web_out:
            jsonutils.write_web(filtered_emoji, json_web_out)
        else:

            if params_path:
                log.out(f'Loading image export parameters...', 36)
                p = orx.params.Parameters(os.path.dirname(params_path),
                                          os.path.basename(params_path))
            else:
                # convert the non-parameter flags into an orx expression to be turned into a parameters object.
                log.out(f'Compiling image export parameters...', 36)
                license_text = ""
                if license == True:
                    license_text = "yes"
                else:
                    license_text = "no"
                makeshift_params = f"dest  structure = {output_naming}   format = {' '.join(output_formats)}   license = {license_text}"
                p = orx.params.Parameters(string=makeshift_params)

            log.out(f'- {len(p.dests)} destination(s) defined.', 32)

            export.export(m, filtered_emoji, input_path, output_formats,
                          os.path.join(output_path, output_naming), src_size,
                          num_threads, renderer, max_batch, verbose)

    except (KeyboardInterrupt, SystemExit) as e:
        log.out(f'>∆∆< Cancelled!\n{e}', 93)
        sys.exit(1)

    # Where all the exceptions eventually go~
    except Exception as e:
        log.out(f'x∆∆x {e}\n', 31)
        raise e  ######################## TEMP, for developer stuff
        sys.exit(1)

    # yay! finished!
    log.out('All done! ^∆∆^\n', 32)  # goodbye
Пример #39
0
def reconstruct_Sco_GEM(model_fn, save_fn = None, write_requirements = True):
    Sco_GEM = cobra.io.read_sbml_model(model_fn)
    Sco_GEM.name = "Sco-GEM"
    Sco_GEM.id = "Sco-GEM"
    Sco_GEM.solver = SOLVER
    
    if save_fn is None:
        save_fn = model_fn

    # Part 1: Fix known issues in models
    ## 1a) Issues in iKS1317
    fix_iKS1317_issues.fix(Sco_GEM)

    ## 1b) Issues in Sco4 v4.00
    sco4_model = cobra.io.read_sbml_model(SCO4_PATH)
    sco4_model.solver = SOLVER
    fix_sco4_issues.fix(sco4_model)

    ## 1c) Add missing / changed gene annotations in iMK1208 identifed in Sco4 / and by Snorre 21.09.2018
    add_missing_gene_annotations_sco4.add_gene_annotations(Sco_GEM)

    # Part 2: Add reactions from Sco4
    Sco_GEM = add_reactions_from_sco4.add_reactions(sco4_model, Sco_GEM, SCO4_REACTION_MAPPING_FN, SCO4_METABOLITE_MAPPING_FN)

    ## 2b) Rename metabolites added from Sco4 to BIGGish Ids
    annotate_new_rxns_and_mets_from_sco4.add_rxn_annotations(Sco_GEM, SCO4_REACTION_ANNOTATION_FN, False)
    annotate_new_rxns_and_mets_from_sco4.add_met_annotations(Sco_GEM, SCO4_METABOLITE_ANNOTATION_FN, False)

    # Part 3: Add and modify reactions according to iAA1259
    iAA1259_model = cobra.io.read_sbml_model(iAA1259_PATH)
    iAA1259_model.solver = SOLVER
    add_and_modify_reactions_according_to_iAA1259.fix_iAA1259(iAA1259_model)
    Sco_GEM = add_and_modify_reactions_according_to_iAA1259.add_reactions(iAA1259_model, Sco_GEM, iAA1259_NEW_REACTIONS_FN)
    Sco_GEM = add_and_modify_reactions_according_to_iAA1259.modify_reactions(Sco_GEM)
    # Change biomass
    Sco_GEM = add_and_modify_reactions_according_to_iAA1259.change_biomass(iAA1259_model, Sco_GEM)

    # Part 4
    fix_issue12_reversibility.fix(Sco_GEM)
    fix_issue33_annotation_bugs.fix(Sco_GEM)
    redox_pseudometabolite.run(Sco_GEM)
    fix_SBO_terms.add_SBO(Sco_GEM)
    fix_issue33_annotation_bugs.fix_metanetx_metabolite_annotations(Sco_GEM, MET_TO_METANETX_FN)
    fix_biomass.fix_biomass(Sco_GEM, NEW_BIOMASS_DATA_FN)
    fix_issue33_annotation_bugs.apply_new_chebi_annotations(Sco_GEM, MET_TO_CHEBI_FN)
    fix_issue33_annotation_bugs.fix_c_c_in_metabolite_ids(Sco_GEM)
    fix_issue33_annotation_bugs.fix_metanetx_reaction_annotations(Sco_GEM, RXN_TO_METANETX_FN)


    # Part 5
    reversibility.change_bounds_according_to_eQuilibrator(Sco_GEM, EQUILIBRATOR_FN_1, EQUILIBRATOR_FN_2)
    reversibility.change_lower_bound_on_CPKS_reactions(Sco_GEM)
    reversibility.change_bounds_on_ATP_driven_reactions(Sco_GEM, ATP_DRIVEN_REACTIONS_REVERSIBILITY_FN)



    # Additional annotations 
    feat_annotations.add_doi_annotations(Sco_GEM, DOI_ANNOTATIONS_FN)
    feat_annotations.add_gene_annotations(Sco_GEM, GENE_ANNOTATIONS_FN)
    feat_subsystem_annotation.update_subsystem_annotations(Sco_GEM, SUBSYSTEM_ANNOTATION_FN)

    # Issue 82 Delete reactions without gene associations
    issue_82_delete_reactions.delete_reactions(Sco_GEM)

    # Issue 85 cpk exchange reaction
    add_and_modify_reactions_according_to_iAA1259.add_exchange_reaction_for_ycpk(Sco_GEM)
   
    #Part 6 - Add transport reactions
    fix_transporters.fix_transporters(Sco_GEM,MODIFIED_TRANSPORT_REACTIONS_FN, NEW_TRANSPORT_REACTIONS_FN,
                                      NEW_TRANSPORT_REACTIONS_TO_NEW_METABOLITES_FN, NEW_METABOLITES_TO_NEW_TRANSPORT_REACTIONS)

    # Save model
    export.export(Sco_GEM, formats = ["xml", "yml"], write_requirements = write_requirements, objective = "BIOMASS_SCO_tRNA")
Пример #40
0
def writetxt(fname):
    from export import export
    export(fname=fname)