cmd_args = parser.parse_args() image_folder = cmd_args.image_folder show = cmd_args.show output_folder = cmd_args.output_folder pause = cmd_args.pause focal_length = cmd_args.focal_length save_vis = cmd_args.save_vis save_params = cmd_args.save_params save_mesh = cmd_args.save_mesh degrees = cmd_args.degrees expose_batch = cmd_args.expose_batch rcnn_batch = cmd_args.rcnn_batch cfg.merge_from_file(cmd_args.exp_cfg) cfg.merge_from_list(cmd_args.exp_opts) cfg.datasets.body.batch_size = expose_batch cfg.is_training = False cfg.datasets.body.splits.test = cmd_args.datasets use_face_contour = cfg.datasets.use_face_contour set_face_contour(cfg, use_face_contour=use_face_contour) with threadpool_limits(limits=1): main( image_folder, cfg, show=show, demo_output_folder=output_folder, pause=pause,
def execute(args): try: logger.info('人物姿勢推定開始: {0}', args.img_dir, decoration=MLogger.DECORATION_BOX) if not os.path.exists(args.img_dir): logger.error("指定された処理用ディレクトリが存在しません。: {0}", args.img_dir, decoration=MLogger.DECORATION_BOX) return False torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False parser = get_parser() argv = parser.parse_args(args=[]) show = argv.show pause = argv.pause focal_length = argv.focal_length save_vis = argv.save_vis save_params = argv.save_params save_mesh = argv.save_mesh degrees = argv.degrees expose_batch = argv.expose_batch rcnn_batch = argv.rcnn_batch cfg.merge_from_file(argv.exp_cfg) cfg.merge_from_list(argv.exp_opts) cfg.datasets.body.batch_size = expose_batch cfg.is_training = False cfg.datasets.body.splits.test = argv.datasets use_face_contour = cfg.datasets.use_face_contour set_face_contour(cfg, use_face_contour=use_face_contour) output_folder = os.path.join(args.img_dir, "pose") result = False with threadpool_limits(limits=1): result = main( args, cfg, show=show, output_folder=output_folder, pause=pause, focal_length=focal_length, save_vis=save_vis, save_mesh=save_mesh, save_params=save_params, degrees=degrees, rcnn_batch=rcnn_batch, ) logger.info('人物姿勢推定終了: {0}', args.img_dir, decoration=MLogger.DECORATION_BOX) return result except Exception as e: logger.critical("姿勢推定で予期せぬエラーが発生しました。", e, decoration=MLogger.DECORATION_BOX) return False