Пример #1
0
    def iterate(self, level=0):

        if self.matrixWidth > 1:  # we can further descend
            winnerMatrixAttributes = None
            for subMatrix in getSubMatrices(self.matrix):

                # this could be done in parallel while this parent process blocks until its sub matrices are done
                subSymbolGenerator = SymbolGenerator()
                result = subSymbolGenerator.process(matrix=subMatrix,
                                                    level=level + 1)
                self.subSymbolGenerators.append(result)

                # the winner sub-matrix is the one with the least entropy
                # ???? in case of a tie, the first one in sequence is selected as the winner.  This will add some bias.
                # ???? is there other information we can utilize to determine which of the n winners to select?
                if winnerMatrixAttributes is None or result.initialEntropy < winnerMatrixAttributes[
                        "initialEntropy"]:
                    winnerMatrixAttributes = {
                        "globalId": result.globalId,
                        "matrix": result.matrix,
                        "initialEntropy": result.initialEntropy
                    }

            # xor winner with all peers, not itself as that would lose data
            for subSymbolGenerator in self.subSymbolGenerators:
                if subSymbolGenerator.globalId != winnerMatrixAttributes[
                        "globalId"]:
                    subSymbolGenerator.matrix = xorMatrices(
                        winnerMatrixAttributes["matrix"],
                        subSymbolGenerator.matrix)
                    subSymbolGenerator.finalEntropy = exputils.calcEntropy(
                        subSymbolGenerator.matrix.flatten())["entropy"]

            # bundle matrices and replace own matrix
            newMatrices = []
            for subSymbolGenerator in self.subSymbolGenerators:
                newMatrices.append(subSymbolGenerator.matrix)
            if len(newMatrices) != 0:
                self.matrix = bundleMatrices(newMatrices)
                self.finalEntropy = exputils.calcEntropy(
                    self.matrix.flatten())["entropy"]
            else:
                self.finalEntropy = self.initialEntropy

        return self
Пример #2
0
    def process(self, matrix, level=0, maxIterations=20):
        self.level = level
        self.subSymbolGenerators = []
        self.matrix = matrix
        self.matrixWidth = len(matrix)
        self.globalId = getGlobalId()
        self.initialEntropy = exputils.calcEntropy(
            self.matrix.flatten())["entropy"]

        previousEntropy = -1
        for x in xrange(
                0, maxIterations
        ):  # maxIterations passes over the data should get it to a stable entropy.  Break out early if it stabilizes less than max
            exputils.writeMatrixImage(
                self.matrix, "sg_test_pic_" + str(x).zfill(5) + ".png")
            self.iterate()
            currentEntropy = exputils.calcEntropy(self.matrix.flatten())
            if currentEntropy == previousEntropy:
                break
            else:
                previousEntropy = currentEntropy

        return self
Пример #3
0
def performBitArrayOperations(leftArray, rightArray):
    left = ""
    right = ""
    andResult = ""
    andResultArray = []
    orResult = ""
    orResultArray = []
    xorResult = ""
    xorResultArray = []
    nandResult = ""
    nandResultArray = []

    for x in xrange(0, len(leftArray)):
        left += str(leftArray[x])
        right += str(rightArray[x])

        if leftArray[x] == rightArray[x] and leftArray[x] == 1:
            andResult += "1"
            andResultArray.append(1)
        else:
            andResult += "0"
            andResultArray.append(0)

        if leftArray[x] == 1 or rightArray[x] == 1:
            orResult += "1"
            orResultArray.append(1)
        else:
            orResult += "0"
            orResultArray.append(0)

        if leftArray[x] == rightArray[x]:
            xorResult += "0"
            xorResultArray.append(0)
        else:
            xorResult += "1"
            xorResultArray.append(1)

        if leftArray[x] == rightArray[x] and leftArray[x] == 1:
            nandResult += "0"
            nandResultArray.append(0)
        else:
            nandResult += "1"
            nandResultArray.append(1)

    print(left,
          exputils.calcEntropy(leftArray)["entropy"], right,
          exputils.calcEntropy(rightArray)["entropy"], andResult,
          exputils.calcEntropy(andResultArray)["entropy"], orResult,
          exputils.calcEntropy(orResultArray)["entropy"], xorResult,
          exputils.calcEntropy(xorResultArray)["entropy"], nandResult,
          exputils.calcEntropy(nandResultArray)["entropy"])
Пример #4
0
            result += "0"
    return result


digits = 4
operands = []
for x in xrange(0, 2**digits):
    operands.append("{0:b}".format(x).zfill(digits))

for lop in operands:
    for rop in operands:
        xored = xor(lop, rop)
        lopPatternArray = map(int, list(lop))
        ropPatternArray = map(int, list(rop))
        xoredPatternArray = map(int, list(xored))

        lopEntropy = exputils.calcEntropy(lopPatternArray)["entropy"]
        ropEntropy = exputils.calcEntropy(ropPatternArray)["entropy"]
        xoredEntropy = exputils.calcEntropy(xoredPatternArray)["entropy"]

        change = "same"
        if (xoredEntropy < lopEntropy):
            change = "dec"
        elif (xoredEntropy > lopEntropy):
            change = "inc"

        print "\"" + lop + "_" + rop + "\": \"" + change + "\","
        #print lop, lopEntropy, rop, ropEntropy, xored, xoredEntropy, change

#for x in xrange(0, len(fiveDigits)):
#	print exputils.calcEntropy(fiveDigits[x])["entropy"]
Пример #5
0
    # simple bit flip
    for x in range(0, len(manipulator)):
        if manipulator[x] == 1:
            baseValue = base[x]
            if baseValue == 0:
                baseValue = 1
            else:
                baseValue = 0
            base[x] = baseValue


#--------------------- main loop  -----------------------
print "starting main loop"
for cycle in xrange(0, 200):
    #print "Flat input: "
    entropy = exputils.calcEntropy(flatInput)
    print str(cycle) + ": " + exputils.vectorToString(flatInput), "e = " + str(
        entropy["entropy"]) + " me = " + str(entropy["metricEntropy"])
    unflattenedInput = exputils.unflattenArray(flatInput, inputWidth)
    if generateOutputMovie:
        exputils.writeMatrixImage(
            unflattenedInput, outputImagePrefix + str(cycle).zfill(5) + ".png")

    spatialPoolerOutput = numpy.zeros(shape=flatInputLength, dtype="int32")
    spatialPooler.compute(inputVector=flatInput,
                          learn=True,
                          activeArray=spatialPoolerOutput)
    #print "Spatial Pooler output from input: "
    #print exputils.vectorToString(spatialPoolerOutput)
    #print "\n"
Пример #6
0
    def process(self, matrix, level=0):
        self.level = level
        self.subMatrixAnalyses = []
        self.matrix = matrix
        self.matrixWidth = len(matrix)

        self.globalId = getGlobalId()
        self.initialEntropy = exputils.calcEntropy(
            self.matrix.flatten())["entropy"]

        #print ("    " * level), "processing globalId", self.globalId

        if self.matrixWidth > 1:  # we can further descend

            winnerMatrixAttributes = None
            for subMatrix in getSubMatrices(self.matrix):

                # this could be done in parallel while this parent process blocks until its sub matrices are done
                subMatrixAnalysis = MatrixAnalysis()
                result = subMatrixAnalysis.process(matrix=subMatrix,
                                                   level=level + 1)
                self.subMatrixAnalyses.append(result)

                if winnerMatrixAttributes is None or result.initialEntropy < winnerMatrixAttributes[
                        "initialEntropy"]:
                    winnerMatrixAttributes = {
                        "globalId": result.globalId,
                        "matrix": result.matrix,
                        "initialEntropy": result.initialEntropy
                    }

            if winnerMatrixAttributes is None:
                winner = self.subMatrixAnalyses[0]
                winnerMatrixAttributes = {
                    "globalId": result.globalId,
                    "matrix": result.matrix,
                    "initialEntropy": result.initialEntropy
                }

            #print "determined level", level, winnerMatrixAttributes["globalId"], " entropy:", winnerMatrixAttributes["entropy"]
            # xor winner with all peers, not self
            for subMatrixAnalysis in self.subMatrixAnalyses:
                #	#print ("    " * level), "    applying xor to ", subMatrixAnalysis.globalId
                #if subMatrixAnalysis.globalId != winnerMatrixAttributes["globalId"]:
                subMatrixAnalysis.matrix = xorMatrices(
                    winnerMatrixAttributes["matrix"], subMatrixAnalysis.matrix)
                subMatrixAnalysis.finalEntropy = exputils.calcEntropy(
                    subMatrixAnalysis.matrix.flatten())["entropy"]

            # bundle matrices and replace own matrix
            newMatrices = []
            for subMatrixAnalysis in self.subMatrixAnalyses:
                newMatrices.append(subMatrixAnalysis.matrix)
            if len(newMatrices) != 0:
                self.matrix = bundleMatrices(newMatrices)
                self.finalEntropy = exputils.calcEntropy(
                    self.matrix.flatten())["entropy"]
            else:
                self.finalEntropy = self.initialEntropy

        return self
Пример #7
0
#
#for y in xrange(106, 406):
#	for x in xrange(226, 286):
#		input1[y, x] = 0
#
#for y in xrange(226, 286):
#	for x in xrange(106, 406):
#		input1[y, x] = 0
#
exputils.writeMatrixImage(input1, "input_1_raw.png")

inputData = input1
previousEntropy = -1
for cycle in xrange(0, 20):

    currentEntropy = exputils.calcEntropy(inputData.flatten())
    if previousEntropy != currentEntropy:
        previousEntropy = currentEntropy
        print "iteration", cycle, "initial entropy", currentEntropy
        mainMatrixAnalysis = MatrixAnalysis()
        mainMatrixAnalysis.process(matrix=inputData)
        print "iteration", cycle, "final entropy", mainMatrixAnalysis.finalEntropy
        exputils.writeMatrixImage(
            mainMatrixAnalysis.matrix,
            "input_1_red_" + str(cycle).zfill(5) + ".png")
        inputData = mainMatrixAnalysis.matrix

##inputData = exputils.getRandom2dBoolMatrix(inputWidth, inputWidth)
#
#
#testPicOriginal = exputils.getRandom2dBoolMatrix(inputWidth, inputWidth)
Пример #8
0

def xorInputs(i1, i2):
    length = len(i1)
    outputData = numpy.zeros(shape=length, dtype="uint8")
    for x in xrange(0, len(i1)):
        if i1[x] != i2[x]:
            outputData[x] = 1
    return outputData


i3 = xorInputs(flati1, flati2)

data = [flati1, flati2, i3]
#--------------------- main loop  -----------------------
print "starting main loop"
for cycle in xrange(0, len(data)):
    d = data[cycle]
    entropy = exputils.calcEntropy(d)
    print str(cycle) + ": " + exputils.vectorToString(d), "e = " + str(
        entropy["entropy"]) + " me = " + str(entropy["metricEntropy"])
    unflattenedInput = exputils.unflattenArray(d, inputWidth)
    if generateOutputMovie:
        exputils.writeMatrixImage(
            unflattenedInput, outputImagePrefix + str(cycle).zfill(5) + ".png")

if generateOutputMovie:
    exputils.generateMovie(outputImageMask,
                           outputImagePrefix + "movie.gif",
                           fps=15)