def replace_sub_graph(self, graph: Graph, match: dict):
        resize_node = match['resize']
        if match['mul_1'].in_node(1).value != match['mul_2'].in_node(1).value or \
                match['mul_1'].in_node(1).value != match['mul_3'].in_node(1).value:
            log.info(
                'Pattern matched around resize op {} has different scale values.'
                .format(resize_node.name))
            return

        interpolate_node = Interpolate(
            graph, {
                'name': resize_node.name + '/Interpolate',
                'mode': resize_node.mode,
                'axes': int64_array([2, 3, 4])
            }).create_node()

        scale = match['mul_1'].in_node(1).value
        scale_value = int64_array([scale, scale, scale])
        scale_const = Const(graph, {
            'value': scale_value,
            'name': resize_node.name + '/Scale'
        }).create_node()

        interpolated_shape = Mul(graph, {
            'name': resize_node.name + '/OutputShape'
        }).create_node()
        match['slice'].out_port(0).connect(interpolated_shape.in_port(0))
        scale_const.out_port(0).connect(interpolated_shape.in_port(1))

        resize_node.in_port(0).get_connection().set_destination(
            interpolate_node.in_port(0))
        interpolated_shape.out_port(0).connect(interpolate_node.in_port(1))
        resize_node.out_port(0).get_connection().set_source(
            interpolate_node.out_port(0))
def replace_interpolate_pattern(graph: Graph, match: dict):
    split = match['split']
    scale = np.array([get_split_scale(split)], dtype=np.float32)
    axis = int(split.in_port(1).get_connection().get_source().node.value)
    split_node_name = split.name
    axis_node = Const(graph, {'name': split_node_name + '/axis', 'value': int64_array([axis])}).create_node()

    shape_node = Shape(graph, dict(name=split_node_name + '/Shape')).create_node()
    scales_node = Const(graph, dict(name=split_node_name + '/scales', value=scale)).create_node()
    mul_node = Mul(graph, dict(name=split_node_name + '/Mul')).create_node()
    scales_node.out_port(0).connect(mul_node.in_port(1))

    strided_slice_node = create_op_with_const_inputs(graph,
                                                     StridedSlice,
                                                     {1: int64_array([axis]), 2: int64_array([axis + 1])},
                                                     {
                                                        'name': split_node_name + '/StridedSlice',
                                                        'begin_mask': int64_array([1]),
                                                        'end_mask': int64_array([1]),
                                                        'new_axis_mask': int64_array([0]),
                                                        'shrink_axis_mask': int64_array([0]),
                                                        'ellipsis_mask': int64_array([0])
                                                     })
    shape_node.out_port(0).connect(strided_slice_node.in_port(0))

    cast_shape_to_float = Cast(graph, {'dst_type': np.float32}).create_node()

    strided_slice_node.out_port(0).connect(cast_shape_to_float.in_port(0))
    cast_shape_to_float.out_port(0).connect(mul_node.in_port(0))

    interp_node = Interpolate(graph,
                              dict(name=split_node_name + '/Interpolate',
                                   mode='nearest',
                                   antialias=0, pads_begin=int64_array([0]), pads_end=int64_array([0]),
                                   coordinate_transformation_mode='half_pixel', nearest_mode='round_prefer_floor',
                                   cube_coeff=-0.75, version='opset4', shape_calculation_mode='scales',
                                   in_ports_count=4, maybe_part_of_sequence=True)).create_node()

    floor_node = Floor(graph, {'name': split_node_name + '/Floor'}).create_node()
    cast_mul_result_to_int = Cast(graph, {'dst_type': np.int64}).create_node()

    mul_node.out_port(0).connect(floor_node.in_port(0))
    floor_node.out_port(0).connect(cast_mul_result_to_int.in_port(0))

    cast_mul_result_to_int.out_port(0).connect(interp_node.in_port(1))
    scales_node.out_port(0).connect(interp_node.in_port(2))
    axis_node.out_port(0).connect(interp_node.in_port(3))

    match['concat'].out_port(0).get_connection().set_source(interp_node.out_port(0))

    split_connection = split.in_port(0).get_connection()
    split_connection.set_destination(interp_node.in_port(0))
    split_connection.get_source().connect(shape_node.in_port(0))
Пример #3
0
def replace_interpolate_pattern(graph: Graph, match: dict):
    split = match['split']
    scale = int64_array([get_split_scale(split)])
    axis = int(split.in_port(1).get_connection().get_source().node.value)
    split_node_name = split.name

    shape_node = Shape(graph,
                       dict(name=split_node_name + '/Shape_')).create_node()
    scales_node = Const(graph,
                        dict(name=split_node_name + '/scales_',
                             value=scale)).create_node()
    mul_node = Mul(graph, dict(name=split_node_name + '/Mul_')).create_node()
    scales_node.out_port(0).connect(mul_node.in_port(1))

    slice_begin = Const(
        graph,
        dict(name=split_node_name + '/slice_begin_',
             value=int64_array([axis]))).create_node()
    slice_end = Const(
        graph,
        dict(name=split_node_name + '/slice_end_',
             value=int64_array([axis + 1]))).create_node()

    strided_slice_node = StridedSlice(
        graph, {
            'name': split_node_name + '/StridedSlice_',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0]),
        }).create_node([shape_node, slice_begin, slice_end])
    strided_slice_node.out_port(0).connect(mul_node.in_port(0))

    interp_node = Interpolate(
        graph,
        dict(name=split_node_name + '/Interpolate_',
             axes=int64_array([axis]),
             mode='nearest')).create_node()
    mul_node.out_port(0).connect(interp_node.in_port(1))

    match['concat'].out_port(0).get_connection().set_source(
        interp_node.out_port(0))

    split_connection = split.in_port(0).get_connection()
    split_connection.set_destination(interp_node.in_port(0))
    split_connection.get_source().connect(shape_node.in_port(0))
Пример #4
0
    def replace_pattern(self, graph: Graph, match: Dict[str, Node]):
        log.debug('UpsampleToResample is triggered')
        upsample = match['upsample']
        input_shape = upsample.in_port(0).data.get_shape()
        input_shape_rank = len(input_shape)
        if input_shape_rank not in [4, 5]:
            log.warning('The input shape is not 4D or 5D for op {}'.format(
                upsample.soft_get('name')))
            return

        if len(upsample.in_nodes()) == 2:
            if upsample.in_node(1).value is None:
                return
            scales = upsample.in_node(1).value
            assert scales.shape == (4, )
            if not (math.isclose(scales[0], 1, rel_tol=1e-5)
                    and math.isclose(scales[1], 1, rel_tol=1e-5)):
                return
            height_scale = scales[2]
            width_scale = scales[3]
        else:
            height_scale = upsample['height_scale']
            width_scale = upsample['width_scale']

        if 1 in upsample.in_ports() and not upsample.in_port(1).disconnected():
            upsample.in_port(1).disconnect()

        factor = Const(graph, {
            'value': np.array([height_scale, width_scale])
        }).create_node()

        shape = Shape(graph, {'name': upsample.name + '/0_port'}).create_node()

        layout = graph.graph['layout']
        if input_shape_rank == 4:
            begin = Const(graph, {
                'value':
                int64_array([get_height_dim(layout, input_shape_rank)])
            }).create_node()
        else:
            begin = Const(graph, {
                'value':
                int64_array([get_depth_dim(layout, input_shape_rank)])
            }).create_node()
        end = Const(graph, {
            'value':
            int64_array([get_width_dim(layout, input_shape_rank) + 1])
        }).create_node()

        stride = Const(graph, {'value': int64_array([1])}).create_node()
        ss = StridedSlice(
            graph, {
                'name': upsample.name + '/ss_0_port',
                'begin_mask': np.array([1]),
                'end_mask': np.array([0]),
                'new_axis_mask': np.array([0]),
                'shrink_axis_mask': int64_array([0]),
                'ellipsis_mask': int64_array([0])
            }).create_node()

        mul = Mul(graph, {
            'name': upsample.name + '/factor_mul_'
        }).create_node()

        source = upsample.in_port(0).get_connection().get_source()
        source.connect(shape.in_port(0))
        shape.out_port(0).connect(ss.in_port(0))
        begin.out_port(0).connect(ss.in_port(1))
        end.out_port(0).connect(ss.in_port(2))
        stride.out_port(0).connect(ss.in_port(3))
        ss.out_port(0).connect(mul.in_port(0))
        factor.out_port(0).connect(mul.in_port(1))

        # Create Interpolate operation
        if input_shape_rank == 4:
            axes = int64_array([
                get_height_dim(layout, input_shape_rank),
                get_width_dim(layout, input_shape_rank)
            ])
        else:
            axes = int64_array([
                get_depth_dim(layout, input_shape_rank),
                get_height_dim(layout, input_shape_rank),
                get_width_dim(layout, input_shape_rank)
            ])

        resample_op = Interpolate(
            graph,
            dict(name='Interpolate/{}'.format(upsample.name),
                 axes=axes,
                 mode=upsample.attrs()['mode'],
                 antialias=0,
                 convert_to_resample=True)).create_node()

        upsample.add_input_port(1, skip_if_exist=True)
        assert upsample.in_port(1).disconnected()
        mul.out_port(0).connect(resample_op.in_port(1))

        upsample.in_port(0).get_connection().set_destination(
            resample_op.in_port(0))
        upsample.out_port(0).get_connection().set_source(
            resample_op.out_port(0))
Пример #5
0
def replace_resize(graph: Graph, resize: Node):
    log.debug("Converting of ONNX Resize-11 to Interpolate-4 "
              "is triggered for node {}.".format(
                  resize.soft_get('name', resize.id)))

    input_shape = resize.in_port(0).data.get_shape()
    input_rank = len(input_shape)
    resize_name = resize.soft_get('name', resize.id)
    if input_rank not in {4, 5}:
        log.warning(
            'The input shape is not 4D or 5D for op with name {}'.format(
                resize_name))
        return

    num_of_inputs = len([
        port for port in resize.in_ports().values() if not port.disconnected()
    ])
    assert num_of_inputs in {3, 4}, \
        "Number of inputs of ONNXResize (with name {}) should be equal to 3 or 4".format(resize_name)

    assert resize.soft_get('coordinate_transformation_mode') != 'tf_crop_and_resize', \
        'Mode tf_crop_and_resize is not supported for op {} with name {}'.format(resize.op, resize_name)

    layout = graph.graph['layout']

    if input_rank == 4:
        begin_dim = get_height_dim(layout, input_rank)
        end_dim = get_width_dim(layout, input_rank) + 1
    else:
        begin_dim = get_depth_dim(layout, input_rank)
        end_dim = get_width_dim(layout, input_rank) + 1

    sizes_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([begin_dim]),
            2: int64_array([end_dim]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/StridedSlice_sizes',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })
    scales_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([begin_dim]),
            2: int64_array([end_dim]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/StridedSlice_scales',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })
    axes_node = Const(
        graph, {
            'name': resize_name + '/axis',
            'value': int64_array(np.arange(begin_dim, end_dim))
        }).create_node()

    shape_calculation_mode = 'scales' if num_of_inputs == 3 else 'sizes'

    interpolate_node = Interpolate(
        graph, {
            'version': 'opset4',
            'mode': convert_mode(resize.mode),
            'coordinate_transformation_mode':
            resize.coordinate_transformation_mode,
            'cube_coeff': resize.cube_coeff,
            'nearest_mode': resize.nearest_mode,
            'pads_begin': int64_array([0]),
            'pads_end': int64_array([0]),
            'antialias': 0,
            'shape_calculation_mode': shape_calculation_mode,
            'in_ports_count': 4
        }).create_node()

    axes_node.out_port(0).connect(interpolate_node.in_port(3))
    shape_of = Shape(graph, {'name': resize_name + '/ShapeOf'}).create_node()

    add_node = create_op_with_const_inputs(graph, Add,
                                           {1: float_array([1.0e-5])},
                                           {'name': resize_name + '/Add'})

    input_data_type = data_type_str_to_np(graph.graph['cmd_params'].data_type)

    if num_of_inputs == 3:
        cast_shape_to_float = Cast(graph, {
            'dst_type': input_data_type
        }).create_node()
        mul_node = Mul(graph, {'name': resize_name + '/Mul'}).create_node()
        shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
        cast_shape_to_float.out_port(0).connect(mul_node.in_port(0))
        cast_add_result_to_int = Cast(graph, {
            'dst_type': np.int64
        }).create_node()
        floor_node = Floor(graph, {
            'name': resize_name + '/Floor'
        }).create_node()
        mul_node.out_port(0).connect(add_node.in_port(0))
        add_node.out_port(0).connect(floor_node.in_port(0))
        floor_node.out_port(0).connect(cast_add_result_to_int.in_port(0))
        cast_add_result_to_int.out_port(0).connect(sizes_ss.in_port(0))
        sizes_ss.out_port(0).connect(interpolate_node.in_port(1))
        scales_ss.out_port(0).connect(interpolate_node.in_port(2))

        connection_of_resize_input = resize.in_port(0).get_connection()
        connection_of_resize_input.set_destination(interpolate_node.in_port(0))

        connection_of_scales = resize.in_port(2).get_connection()
        connection_of_scales.set_destination(scales_ss.in_port(0))

        connection_of_resize_input.get_source().connect(shape_of.in_port(0))
        connection_of_scales.get_source().connect(mul_node.in_port(1))
    else:
        cast_shape_to_float = Cast(graph, {
            'dst_type': input_data_type
        }).create_node()
        cast_sizes_to_float = Cast(graph, {
            'dst_type': input_data_type
        }).create_node()
        div_node = Div(graph, {'name': resize_name + '/Div'}).create_node()
        cast_sizes_to_float.out_port(0).connect(div_node.in_port(0))
        cast_shape_to_float.out_port(0).connect(div_node.in_port(1))
        shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
        div_node.out_port(0).connect(add_node.in_port(0))
        add_node.out_port(0).connect(scales_ss.in_port(0))
        scales_ss.out_port(0).connect(interpolate_node.in_port(2))
        sizes_ss.out_port(0).connect(interpolate_node.in_port(1))

        connection_of_resize_input = resize.in_port(0).get_connection()
        connection_of_resize_input.set_destination(interpolate_node.in_port(0))

        connection_of_sizes = resize.in_port(3).get_connection()
        connection_of_sizes.set_destination(sizes_ss.in_port(0))

        connection_of_resize_input.get_source().connect(shape_of.in_port(0))
        connection_of_sizes.get_source().connect(
            cast_sizes_to_float.in_port(0))

    rename_nodes([(resize, resize_name + '/delete'),
                  (interpolate_node, resize_name)])
    resize.out_port(0).get_connection().set_source(
        interpolate_node.out_port(0))
Пример #6
0
    def replace_pattern(self, graph: Graph, match: Dict[str, Node]):
        log.debug('UpsampleToResample is triggered')
        upsample = match['upsample']
        upsample_name = upsample.soft_get('name', upsample.id)
        input_shape = upsample.in_port(0).data.get_shape()
        input_shape_rank = len(input_shape)
        if input_shape_rank not in [4, 5]:
            log.warning('The input shape is not 4D or 5D for op {}'.format(
                upsample.soft_get('name')))
            return

        depth_scale = None
        layout = graph.graph['layout']

        if len(upsample.in_nodes()) == 2:
            if upsample.in_node(1).value is None:
                return
            scales = upsample.in_node(1).value
            assert len(scales) in (
                4, 5
            ), 'Supported scales rank is 4 or 5, but it is {} for node {}'.format(
                len(scales), upsample_name)
            if not (math.isclose(scales[0], 1, rel_tol=1e-5)
                    and math.isclose(scales[1], 1, rel_tol=1e-5)):
                return
            height_scale = scales[get_height_dim(layout, input_shape_rank)]
            width_scale = scales[get_width_dim(layout, input_shape_rank)]
            if len(scales) == 5:
                depth_scale = scales[get_depth_dim(layout, input_shape_rank)]
        else:
            height_scale = upsample['height_scale']
            width_scale = upsample['width_scale']

        if 1 in upsample.in_ports() and not upsample.in_port(1).disconnected():
            upsample.in_port(1).disconnect()

        upsample_name = upsample.soft_get('name', upsample.id)
        shape = Shape(graph, {'name': upsample_name + '/0_port'}).create_node()

        layout = graph.graph['layout']

        if input_shape_rank == 4:
            begin_value = int64_array(
                [get_height_dim(layout, input_shape_rank)])
            factor_value = float32_array([height_scale, width_scale])
        else:
            begin_value = int64_array(
                [get_depth_dim(layout, input_shape_rank)])
            factor_value = float32_array(
                [depth_scale, height_scale, width_scale])

        ss = create_op_with_const_inputs(
            graph, StridedSlice, {
                1: begin_value,
                2: int64_array([get_width_dim(layout, input_shape_rank) + 1]),
                3: int64_array([1])
            }, {
                'name': upsample_name + '/ss_0_port',
                'begin_mask': int64_array([1]),
                'end_mask': int64_array([1]),
                'new_axis_mask': int64_array([0]),
                'shrink_axis_mask': int64_array([0]),
                'ellipsis_mask': int64_array([0])
            })

        mul = create_op_node_with_second_input(
            graph, Mul, factor_value, {'name': upsample_name + '/factor_mul'})

        source = upsample.in_port(0).get_connection().get_source()
        source.connect(shape.in_port(0))
        shape.out_port(0).connect(ss.in_port(0))

        ss.out_port(0).connect(mul.in_port(0))

        # Create Interpolate operation
        if input_shape_rank == 4:
            axes = int64_array([
                get_height_dim(layout, input_shape_rank),
                get_width_dim(layout, input_shape_rank)
            ])
        else:
            axes = int64_array([
                get_depth_dim(layout, input_shape_rank),
                get_height_dim(layout, input_shape_rank),
                get_width_dim(layout, input_shape_rank)
            ])

        axes_node = Const(graph, {
            'name': upsample_name + '/axis',
            'value': axes
        }).create_node()

        interpolate = Interpolate(
            graph, {
                'mode': upsample.attrs()['mode'],
                'antialias': 0,
                'pads_begin': int64_array([0]),
                'pads_end': int64_array([0]),
                'coordinate_transformation_mode': 'half_pixel',
                'nearest_mode': 'round_prefer_floor',
                'cube_coeff': -0.75,
                'shape_calculation_mode': 'scales',
                'version': 'opset4',
                'in_ports_count': 4
            }).create_node()

        upsample.add_input_port(1, skip_if_exist=True)
        assert upsample.in_port(1).disconnected()
        mul.out_port(0).connect(interpolate.in_port(1))
        axes_node.out_port(0).connect(interpolate.in_port(3))

        scales_node = Const(graph, {
            'name': upsample_name + '/scales',
            'value': factor_value
        }).create_node()
        scales_node.out_port(0).connect(interpolate.in_port(2))

        upsample.in_port(0).get_connection().set_destination(
            interpolate.in_port(0))
        upsample.out_port(0).get_connection().set_source(
            interpolate.out_port(0))

        rename_nodes([(upsample, upsample_name + '/delete'),
                      (interpolate, upsample_name)])

        convert_to_float = Cast(graph, dict(dst_type=np.float32)).create_node()
        convert_to_int = Cast(graph, dict(dst_type=np.int64)).create_node()

        mul.in_port(0).get_connection().insert_node(convert_to_float)
        mul.out_port(0).get_connection().insert_node(convert_to_int)
Пример #7
0
    def replace_pattern(self, graph: Graph, match: Dict[str, Node]):
        log.debug('UpsampleToResample is triggered')
        upsample = match['upsample']
        upsample_name = upsample.soft_get('name', upsample.id)
        input_shape = upsample.in_port(0).data.get_shape()
        input_shape_rank = len(input_shape)
        if input_shape_rank not in [4, 5]:
            log.warning('The input shape is not 4D or 5D for op {}'.format(
                upsample.soft_get('name')))
            return

        depth_scale = None
        if len(upsample.in_nodes()) == 2:
            if upsample.in_node(1).value is None:
                return
            scales = upsample.in_node(1).value
            assert len(scales) in (
                4, 5
            ), 'Supported scales rank is 4 or 5, but it is {} for node {}'.format(
                len(scales), upsample_name)
            if not (math.isclose(scales[0], 1, rel_tol=1e-5)
                    and math.isclose(scales[1], 1, rel_tol=1e-5)):
                return
            height_scale = scales[2]
            width_scale = scales[3]
            if len(scales) == 5:
                depth_scale = scales[4]
        else:
            height_scale = upsample['height_scale']
            width_scale = upsample['width_scale']

        if not math.isclose(height_scale, width_scale, rel_tol=1e-5):
            log.debug(
                'Width and height scales are not equal: {} vs {} for node {}'.
                format(width_scale, height_scale, upsample_name))
            return
        if depth_scale is not None and not math.isclose(
                height_scale, depth_scale, rel_tol=1e-5):
            log.debug(
                'Depth and height scales are not equal: {} vs {} for node {}'.
                format(depth_scale, height_scale, upsample_name))
            return

        if 1 in upsample.in_ports() and not upsample.in_port(1).disconnected():
            upsample.in_port(1).disconnect()

        shape = Shape(graph, {'name': upsample_name + '/0_port'}).create_node()

        layout = graph.graph['layout']

        if input_shape_rank == 4:
            begin_value = int64_array(
                [get_height_dim(layout, input_shape_rank)])
            factor_value = np.array([height_scale, width_scale])
        else:
            begin_value = int64_array(
                [get_depth_dim(layout, input_shape_rank)])
            factor_value = np.array([depth_scale, height_scale, width_scale])

        ss = create_op_with_const_inputs(
            graph, StridedSlice, {
                1: begin_value,
                2: int64_array([get_width_dim(layout, input_shape_rank) + 1]),
                3: int64_array([1])
            }, {
                'name': upsample_name + '/ss_0_port',
                'begin_mask': int64_array([1]),
                'end_mask': int64_array([1]),
                'new_axis_mask': int64_array([0]),
                'shrink_axis_mask': int64_array([0]),
                'ellipsis_mask': int64_array([0])
            })

        mul = create_op_node_with_second_input(
            graph, Mul, factor_value, {'name': upsample_name + '/factor_mul_'})

        source = upsample.in_port(0).get_connection().get_source()
        source.connect(shape.in_port(0))
        shape.out_port(0).connect(ss.in_port(0))

        ss.out_port(0).connect(mul.in_port(0))

        # Create Interpolate operation
        if input_shape_rank == 4:
            axes = int64_array([
                get_height_dim(layout, input_shape_rank),
                get_width_dim(layout, input_shape_rank)
            ])
        else:
            axes = int64_array([
                get_depth_dim(layout, input_shape_rank),
                get_height_dim(layout, input_shape_rank),
                get_width_dim(layout, input_shape_rank)
            ])

        resample_op = Interpolate(
            graph,
            dict(name=upsample_name + '/Interpolate',
                 axes=axes,
                 mode=upsample.attrs()['mode'],
                 antialias=0,
                 convert_to_resample=True)).create_node()

        upsample.add_input_port(1, skip_if_exist=True)
        assert upsample.in_port(1).disconnected()
        mul.out_port(0).connect(resample_op.in_port(1))

        upsample.in_port(0).get_connection().set_destination(
            resample_op.in_port(0))
        upsample.out_port(0).get_connection().set_source(
            resample_op.out_port(0))

        convert_to_float = Cast(graph, dict(dst_type=np.float32)).create_node()
        convert_to_int = Cast(graph, dict(dst_type=np.int64)).create_node()

        mul.in_port(0).get_connection().insert_node(convert_to_float)
        mul.out_port(0).get_connection().insert_node(convert_to_int)
def replace_sequence(seq: List[Node], graph: Graph):
    """
    This function replaces a sequence of consecutive Interpolate layers with one Interpolate layer,
    if modes of all nodes of a sequence are the same.
    :param seq: sequence of Interpolate layers
    :param graph: graph to which nodes of seq belong
    :return: Nothing
    """
    if not seq:
        return
    if len(seq) == 1:
        return

    modes = set([n.mode for n in seq])
    if len(modes) != 1:
        return

    dims_and_scales_ = []
    # Each element of the list dims_and_scales_ is a pair
    #      (axis, output size for this axis)
    for interp in seq:
        dims_and_scales_.extend(
            zip(interp.axes,
                interp.in_port(1).get_connection().get_source().node.value))

    axis_to_size = sorted(list(dict(dims_and_scales_).items()),
                          key=lambda x: x[0])
    axes_of_node = int64_array([z[0] for z in axis_to_size])
    sizes = int64_array([z[1] for z in axis_to_size])

    fst_interp_node = seq[0]
    last_interp_node = seq[-1]
    fst_interp_node_name = fst_interp_node.name
    fst_interp_node_mode = fst_interp_node.mode
    fst_interp_node_align_corners = fst_interp_node.soft_get('align_corners',
                                                             default=0)
    fst_interp_node_antialias = fst_interp_node.soft_get('antialias',
                                                         default=0)
    fst_interp_node_pads_begin = fst_interp_node.soft_get('pads_begin',
                                                          default=0)
    fst_interp_node_pads_end = fst_interp_node.soft_get('pads_end', default=0)
    interp_node = Interpolate(
        graph,
        dict(name=fst_interp_node_name + '/Interpolate_',
             axes=axes_of_node,
             mode=fst_interp_node_mode,
             align_corners=fst_interp_node_align_corners,
             antialias=fst_interp_node_antialias,
             pads_begin=fst_interp_node_pads_begin,
             pads_end=fst_interp_node_pads_end)).create_node()

    scales_node = Const(
        graph, dict(name=fst_interp_node_name + '/scales_',
                    value=sizes)).create_node()
    scales_node.out_port(0).connect(interp_node.in_port(1))

    fst_interp_connection = fst_interp_node.in_port(0).get_connection()
    fst_interp_connection.set_destination(interp_node.in_port(0))

    last_interp_node.out_port(0).get_connection().set_source(
        interp_node.out_port(0))
Пример #9
0
def replace_resize(graph: Graph, resize: Node):
    log.debug("Converting of ONNX Resize-10 to Interpolate-4 "
              "is triggered for node {}.".format(
                  resize.soft_get('name', resize.id)))

    resize_name = resize.soft_get('name', resize.id)

    rank_node = Rank(graph, {'name': resize_name + '/max_axes'}).create_node()
    range_node = create_op_with_const_inputs(graph, Range, {
        0: int64_array(2),
        2: int64_array(1)
    }, {'name': resize_name + '/axes'})

    sizes_ss = create_op_with_const_inputs(graph, StridedSlice, {
        1: int64_array([2]),
        2: int64_array([0]),
        3: int64_array([1])
    }, {
        'name': resize_name + '/sizes_ss',
        'begin_mask': int64_array([1]),
        'end_mask': int64_array([0]),
        'new_axis_mask': int64_array([0]),
        'shrink_axis_mask': int64_array([0]),
        'ellipsis_mask': int64_array([0])
    })
    scales_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([2]),
            2: int64_array([0]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/scales_ss',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([0]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })

    rank_node.out_port(0).connect(range_node.in_port(1))

    interpolate_node = Interpolate(
        graph, {
            'version': 'opset4',
            'mode': 'linear_onnx' if resize.mode == 'linear' else 'nearest',
            'coordinate_transformation_mode': 'asymmetric',
            'cube_coeff': -0.75,
            'nearest_mode': 'simple',
            'pads_begin': int64_array([0]),
            'pads_end': int64_array([0]),
            'antialias': 0,
            'shape_calculation_mode': 'scales',
            'in_ports_count': 4
        }).create_node()

    range_node.out_port(0).connect(interpolate_node.in_port(3))
    shape_of = Shape(graph, {'name': resize_name + '/ShapeOf'}).create_node()

    # When we calculate 'sizes' input as floor(input_shape * scales), we can get incorrect 'sizes' if, e.g.,
    # scales = [1.0, 1.0, 1.33333, 2.0], input_shape = [1, 3, 30, 200], because
    # input_shape * scales = [1, 3, 39.9999, 400], and floor(input_shape * scales)[2] == 39, not 40.
    # Maybe we need to calculate 'sizes' input as floor(input_shape * scales + eps), where eps is some small
    # floating point number, e.g. 1.0e-5. But, in this case, if scales = [1.0, 1.0, 1.333333, 2.0],
    # input_shape = [1, 3, 30, 200], floor(input_shape * scales + eps) = 39, not 40, because
    # input_shape[2] * scales[2] + 1.0e-5 =  39.99991.
    # Hence, we need to calculate 'sizes' as floor(input_shape * (scales + eps)).
    add_node = create_op_with_const_inputs(graph, Add,
                                           {1: float_array([1.0e-5])},
                                           {'name': resize_name + '/Add'})

    input_data_type = data_type_str_to_np(graph.graph['cmd_params'].data_type)

    cast_shape_to_float = Cast(graph, {
        'dst_type': input_data_type
    }).create_node()

    shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
    mul_node = Mul(graph, {
        'name': resize_name + '/Mul'
    }).create_node([cast_shape_to_float, add_node])
    floor_node = Floor(graph, {
        'name': resize_name + '/Floor'
    }).create_node([mul_node])
    cast_mul_result_to_int = Cast(graph, {
        'dst_type': np.int64
    }).create_node([floor_node])
    cast_mul_result_to_int.out_port(0).connect(sizes_ss.in_port(0))
    sizes_ss.out_port(0).connect(interpolate_node.in_port(1))

    scales_ss.out_port(0).connect(interpolate_node.in_port(2))

    connection_of_resize_input = resize.in_port(0).get_connection()
    connection_of_resize_input.set_destination(interpolate_node.in_port(0))

    connection_of_scales = resize.in_port(1).get_connection()
    connection_of_scales.set_destination(scales_ss.in_port(0))

    connection_of_resize_input.get_source().connect(shape_of.in_port(0))
    connection_of_resize_input.get_source().connect(rank_node.in_port(0))
    connection_of_scales.get_source().connect(add_node.in_port(0))

    rename_nodes([(resize, resize_name + '/delete'),
                  (interpolate_node, resize_name)])
    resize.out_port(0).get_connection().set_source(
        interpolate_node.out_port(0))
    def replace_pattern(self, graph: Graph, match: dict):
        unsqueeze_node = match['unsqueeze']
        unsqueeze_name = unsqueeze_node.name

        second_input_of_unsqueeze = unsqueeze_node.in_port(
            1).get_connection().get_source().node
        if not second_input_of_unsqueeze.has_valid('value'):
            return

        d_idx = int(second_input_of_unsqueeze.value)

        second_input_of_tile = match['tile'].in_port(
            1).get_connection().get_source().node
        if not second_input_of_tile.has_valid('value'):
            return

        input_shape_of_unsqueeze = unsqueeze_node.in_port(0).data.get_shape()
        if len(input_shape_of_unsqueeze) not in {4, 5}:
            return

        scale = float32_array([second_input_of_tile.value[d_idx]])
        axis = d_idx - 1
        axis_node = Const(graph, {
            'name': unsqueeze_name + '/axis',
            'value': int64_array([axis])
        }).create_node()

        shape_node = Shape(graph,
                           dict(name=unsqueeze_name + '/Shape')).create_node()
        scales_node = Const(graph,
                            dict(name=unsqueeze_name + '/scales',
                                 value=scale)).create_node()
        mul_node = Mul(graph, dict(name=unsqueeze_name + '/Mul')).create_node()
        scales_node.out_port(0).connect(mul_node.in_port(1))

        slice_begin = Const(
            graph,
            dict(name=unsqueeze_name + '/slice_begin',
                 value=int64_array([axis]))).create_node()
        slice_end = Const(
            graph,
            dict(name=unsqueeze_name + '/slice_end',
                 value=int64_array([axis + 1]))).create_node()

        strided_slice_node = StridedSlice(
            graph, {
                'name': unsqueeze_name + '/StridedSlice',
                'begin_mask': int64_array([1]),
                'end_mask': int64_array([1]),
                'new_axis_mask': int64_array([0]),
                'shrink_axis_mask': int64_array([0]),
                'ellipsis_mask': int64_array([0]),
            }).create_node()
        shape_node.out_port(0).connect(strided_slice_node.in_port(0))
        slice_begin.out_port(0).connect(strided_slice_node.in_port(1))
        slice_end.out_port(0).connect(strided_slice_node.in_port(2))

        cast_shape_to_float = Cast(graph, {
            'dst_type': np.float32
        }).create_node()

        strided_slice_node.out_port(0).connect(cast_shape_to_float.in_port(0))
        cast_shape_to_float.out_port(0).connect(mul_node.in_port(0))

        interp_node = Interpolate(
            graph,
            dict(mode='nearest',
                 antialias=0,
                 pads_begin=int64_array([0]),
                 pads_end=int64_array([0]),
                 coordinate_transformation_mode='half_pixel',
                 nearest_mode='round_prefer_floor',
                 cube_coeff=-0.75,
                 version='opset4',
                 shape_calculation_mode='scales',
                 in_ports_count=4,
                 maybe_part_of_sequence=True)).create_node()

        floor_node = Floor(graph, {
            'name': unsqueeze_name + '/Floor'
        }).create_node()
        cast_mul_result_to_int = Cast(graph, {
            'dst_type': np.int64
        }).create_node()

        mul_node.out_port(0).connect(floor_node.in_port(0))
        floor_node.out_port(0).connect(cast_mul_result_to_int.in_port(0))

        cast_mul_result_to_int.out_port(0).connect(interp_node.in_port(1))
        scales_node.out_port(0).connect(interp_node.in_port(2))
        axis_node.out_port(0).connect(interp_node.in_port(3))

        reshape_node = match['reshape']

        reshape_node.out_port(0).get_connection().set_source(
            interp_node.out_port(0))
        reshape_name = reshape_node.soft_get('name', reshape_node.id)
        rename_nodes([(reshape_node, reshape_name + '/delete'),
                      (interp_node, reshape_name)])

        unsqueeze_connection = match['unsqueeze'].in_port(0).get_connection()
        before_unsqueeze = unsqueeze_connection.get_source().node
        unsqueeze_connection.set_destination(interp_node.in_port(0))
        before_unsqueeze.out_port(0).connect(shape_node.in_port(0))
Пример #11
0
    def replace_pattern(self, graph: Graph, match: dict):
        unsqueeze_node = match['unsqueeze']
        unsqueeze_name = unsqueeze_node.name

        second_input_of_unsqueeze = unsqueeze_node.in_port(
            1).get_connection().get_source().node
        if not second_input_of_unsqueeze.has_valid('value'):
            return

        d_idx = int(second_input_of_unsqueeze.value)

        second_input_of_tile = match['tile'].in_port(
            1).get_connection().get_source().node
        if not second_input_of_tile.has_valid('value'):
            return

        input_shape_of_unsqueeze = unsqueeze_node.in_port(0).data.get_shape()
        if len(input_shape_of_unsqueeze) not in {4, 5}:
            return

        scale = int64_array([second_input_of_tile.value[d_idx]])
        axis = d_idx - 1

        shape_node = Shape(graph, dict(name=unsqueeze_name +
                                       '/Shape_')).create_node()
        scales_node = Const(
            graph, dict(name=unsqueeze_name + '/scales_',
                        value=scale)).create_node()
        mul_node = Mul(graph,
                       dict(name=unsqueeze_name + '/Mul_')).create_node()
        scales_node.out_port(0).connect(mul_node.in_port(1))

        slice_begin = Const(
            graph,
            dict(name=unsqueeze_name + '/slice_begin_',
                 value=int64_array([axis]))).create_node()
        slice_end = Const(
            graph,
            dict(name=unsqueeze_name + '/slice_end_',
                 value=int64_array([axis + 1]))).create_node()

        strided_slice_node = StridedSlice(
            graph, {
                'name': unsqueeze_name + '/StridedSlice_',
                'begin_mask': int64_array([1]),
                'end_mask': int64_array([1]),
                'new_axis_mask': int64_array([0]),
                'shrink_axis_mask': int64_array([0]),
                'ellipsis_mask': int64_array([0]),
            }).create_node()
        shape_node.out_port(0).connect(strided_slice_node.in_port(0))
        slice_begin.out_port(0).connect(strided_slice_node.in_port(1))
        slice_end.out_port(0).connect(strided_slice_node.in_port(2))
        strided_slice_node.out_port(0).connect(mul_node.in_port(0))

        interp_node = Interpolate(
            graph,
            dict(name=unsqueeze_name + '/Interpolate_',
                 axes=int64_array([axis]),
                 mode='nearest')).create_node()
        mul_node.out_port(0).connect(interp_node.in_port(1))

        match['reshape'].out_port(0).get_connection().set_source(
            interp_node.out_port(0))

        unsqueeze_connection = match['unsqueeze'].in_port(0).get_connection()
        before_unsqueeze = unsqueeze_connection.get_source().node
        unsqueeze_connection.set_destination(interp_node.in_port(0))
        before_unsqueeze.out_port(0).connect(shape_node.in_port(0))