Пример #1
0
def extract_of_features(feat_path, dataset, labspath, train_lst, val_lst):

    nbins, mth, grid = 20, 2, 20  # grid should be None for extracting HOOF
    if not os.path.isfile(
            os.path.join(feat_path, "of_feats_grid" + str(grid) + ".pkl")):
        if not os.path.exists(feat_path):
            os.makedirs(feat_path)
        #    # Extract Grid OF / HOOF features {mth = 2, and vary nbins}
        print("Training extraction ... ")
        features, strokes_name_id = extract_stroke_feats(dataset, labspath, train_lst, \
                                                     nbins, mth, True, grid)
        with open(
                os.path.join(feat_path, "of_feats_grid" + str(grid) + ".pkl"),
                "wb") as fp:
            pickle.dump(features, fp)
        with open(
                os.path.join(feat_path, "of_snames_grid" + str(grid) + ".pkl"),
                "wb") as fp:
            pickle.dump(strokes_name_id, fp)

    if not os.path.isfile(
            os.path.join(feat_path, "of_feats_val_grid" + str(grid) + ".pkl")):
        print("Validation extraction ....")
        features_val, strokes_name_id_val = extract_stroke_feats(dataset, labspath, val_lst, \
                                                         nbins, mth, True, grid)

        with open(
                os.path.join(feat_path,
                             "of_feats_val_grid" + str(grid) + ".pkl"),
                "wb") as fp:
            pickle.dump(features_val, fp)
        with open(
                os.path.join(feat_path,
                             "of_snames_val_grid" + str(grid) + ".pkl"),
                "wb") as fp:
            pickle.dump(strokes_name_id_val, fp)
Пример #2
0
def main(base_name, nbins=10, grid=None, cluster_size=10): # main(base_name, c3dWinSize=16, use_gpu=False):
    """
    Function to extract orientation features and find the directions of strokes, 
    using LDA model/clustering and evaluate on three cluster analysis on highlights.
    The videos can be visualized by writing trimmed class videos into their respective
    classes.
    
    Parameters:
    ------
    
    base_name: path to the wts, losses, predictions and log files
    use_gpu: True if training to be done on GPU, False for CPU
    
    """
    seed = 1234
    
    print(60*"#")
          
    #####################################################################
    
    # Form dataloaders 
#    train_lst_main_ext = get_main_dataset_files(MAIN_DATASET)   #with extensions
#    train_lst_main = [t.rsplit('.', 1)[0] for t in train_lst_main_ext]   # remove the extension
#    val_lst_main_ext = get_main_dataset_files(VAL_DATASET)
#    val_lst_main = [t.rsplit('.', 1)[0] for t in val_lst_main_ext]
    
    # Divide the samples files into training set, validation and test sets
    train_lst, val_lst, test_lst = utils.split_dataset_files(DATASET)
    #print("c3dWinSize : {}".format(c3dWinSize))
    
    # form the names of the list of label files, should be at destination 
    train_lab = [f+".json" for f in train_lst]
    val_lab = [f+".json" for f in val_lst]
    test_lab = [f+".json" for f in test_lst]
#    train_lab_main = [f+".json" for f in train_lst_main]
#    val_lab_main = [f+".json" for f in val_lst_main]
    
    # get complete path lists of label files
    tr_labs = [os.path.join(LABELS, f) for f in train_lab]
    val_labs = [os.path.join(LABELS, f) for f in val_lab]
#    tr_labs_main = [os.path.join(MAIN_LABELS, f) for f in train_lab_main]
#    val_labs_main = [os.path.join(VAL_LABELS, f) for f in val_lab_main]
    #####################################################################
    
    sizes = [utils.getNFrames(os.path.join(DATASET, f+".avi")) for f in train_lst]
    val_sizes = [utils.getNFrames(os.path.join(DATASET, f+".avi")) for f in val_lst]
#    sizes_main = [utils.getNFrames(os.path.join(MAIN_DATASET, f)) for f in train_lst_main_ext]
#    val_sizes_main = [utils.getNFrames(os.path.join(VAL_DATASET, f)) for f in val_lst_main_ext]
    
    ###########################################################################
    # Merge the training highlights and main dataset variables
#    train_lab.extend(train_lab_main)
#    tr_labs.extend(tr_labs_main)
#    sizes.extend(sizes_main)
    
    print("No. of training videos : {}".format(len(train_lst)))
    
    print("Size : {}".format(sizes))
#    hlDataset = VideoDataset(tr_labs, sizes, seq_size=SEQ_SIZE, is_train_set = True)
#    print(hlDataset.__len__())
    
    #####################################################################
    
    # Feature Extraction : (GRID OF / HOOF / 2D CNN / 3DCNN / IDT)
    
    # Get feats for only the training videos. Get ordered histograms of freq
    if grid is not None:
        print("GRID : {}, nClusters : {} ".format(grid, cluster_size))
    else:
        print("mth : {}, nBins : {}, nClusters : {}".format(mth, nbins, cluster_size))
    
    #####################################################################
    # read into dictionary {vidname: np array, ...}
    print("Loading features from disk...")
    #features = utils.readAllPartitionFeatures(c3dFC7FeatsPath, train_lst)
#    mainFeatures = utils.readAllPartitionFeatures(c3dFC7MainFeatsPath, train_lst_main)
#    features.update(mainFeatures)     # Merge dicts
    # get Nx4096 numpy matrix with columns as features and rows as window placement features
#    features, strokes_name_id = select_trimmed_feats(c3dFC7FeatsPath, LABELS, \
#                                    train_lst, c3dWinSize) 
    if not os.path.exists(base_name):
        os.makedirs(base_name)
        #    # Extract Grid OF / HOOF features {mth = 2, and vary nbins}
        features, strokes_name_id = extract_stroke_feats(DATASET, LABELS, train_lst, \
                                                     nbins, mth, True, grid) 

#        BATCH_SIZE, SEQ_SIZE, STEP = 16, 16, 1
#        features, strokes_name_id = extract_feats(DATASET, LABELS, CLASS_IDS, BATCH_SIZE, 
#                                                  SEQ_SIZE, STEP, extractor='3dcnn', 
#                                                  part='train')
        with open(os.path.join(base_name, "hoof_feats_b"+str(nbins)+".pkl"), "wb") as fp:
            pickle.dump(features, fp)
        with open(os.path.join(base_name, "hoof_snames_b"+str(nbins)+".pkl"), "wb") as fp:
            pickle.dump(strokes_name_id, fp)

    with open(os.path.join(base_name, "hoof_feats_b"+str(nbins)+".pkl"), "rb") as fp:
        features = pickle.load(fp)
    with open(os.path.join(base_name, "hoof_feats_b"+str(nbins)+".pkl"), "rb") as fp:
        strokes_name_id = pickle.load(fp)
   
    #####################################################################
    # get matrix of features from dictionary (N, vec_size)
    vecs = []
    for key in sorted(list(features.keys())):
        vecs.append(features[key])
    vecs = np.vstack(vecs)
    
    vecs[np.isnan(vecs)] = 0
    vecs[np.isinf(vecs)] = 0
    
    #fc7 layer output size (4096) 
    INP_VEC_SIZE = vecs.shape[-1]
    print("INP_VEC_SIZE = ", INP_VEC_SIZE)
    
    km_filepath = os.path.join(base_name, km_filename)
#    # Uncomment only while training.
    if not os.path.isfile(km_filepath+"_C"+str(cluster_size)+".pkl"):
        km_model = make_codebook(vecs, cluster_size)  #, model_type='gmm') 
        ##    # Save to disk, if training is performed
        print("Writing the KMeans models to disk...")
        pickle.dump(km_model, open(km_filepath+"_C"+str(cluster_size)+".pkl", "wb"))
    else:
        # Load from disk, for validation and test sets.
        km_model = pickle.load(open(km_filepath+"_C"+str(cluster_size)+".pkl", 'rb'))
    
    ###########################################################################
    # Form the training dataset for supervised classification 
    # Assign the words (flow frames) to their closest cluster centres and count the 
    # frequency for each document(video). Create IDF bow dataframe by weighting
    # df_train is (nVids, 50) for magnitude, with index as videonames
#    print("Create a dataframe for C3D FC7 features...")
#    df_train_c3d, words_train = create_bovw_c3d_traindf(features, \
#                                strokes_name_id, km_model, c3dWinSize)
    
    print("Create a dataframe for HOOF features...")
    df_train, words_train = create_bovw_df(features, strokes_name_id, km_model,\
                                                base_name, "train")

    # read the stroke annotation labels from text file.
    vids_list = list(df_train.index)
    labs_keys, labs_values = get_cluster_labels(ANNOTATION_FILE)
    if min(labs_values) == 1:
        labs_values = [l-1 for l in labs_values]
        labs_keys = [k.replace('.avi', '') for k in labs_keys]
    train_labels = np.array([labs_values[labs_keys.index(v)] for v in vids_list])
    
    ###########################################################################
                
#    apply_clustering(df_train, DATASET, LABELS, ANNOTATION_FILE, base_name)

    
    ###########################################################################
    
#    print("Training stroke labels : ")
#    print(train_labels)
#    print(train_labels.shape)
    
    # concat dataframe to contain features and corresponding labels
    #df_train = pd.concat([df_train_mag, labs_df], axis=1)
    
    ###########################################################################
    # Train SVM
    clf = LinearSVC(verbose=False, random_state=124, max_iter=3000)
    clf.fit(df_train, train_labels)
    
    print("Training Complete.")
    ###########################################################################
#    # Train a classifier on the features.
#    print("LDA execution !!! ")
#    #Run LDA
#    
#    # Get list of lists. Each sublist contains video cluster strIDs (words). 
#    # Eg. [["39","29","39","39","0", ...], ...]
#    doc_clean = [doc.split() for doc in words_train]
#    #print(doc_clean)
#    diction=corpora.Dictionary(doc_clean)    # Form a dictionary
#    print("printing dictionary after corp  {} ".format(diction))
#    doc_term_matrix = [diction.doc2bow(doc) for doc in doc_clean]
#    #dictionary = corpora.Dictionary(diction)
#    
#    # Inference using the data.
#    ldamodel_obj = gensim.models.ldamodel.LdaModel(doc_term_matrix, \
#                    num_topics = NUM_TOPICS, id2word=diction, passes=10, \
#                    random_state=seed)
##    ldamodel_obj = gensim.models.ldaseqmodel.LdaSeqModel(doc_term_matrix, \
##                                        num_topics=3, time_slice=[351])
##    ldamodel_obj = gensim.models.LsiModel(doc_term_matrix, num_topics=3, \
##                                          id2word = diction)
#
#    print("training complete saving to disk ")
#    #save model to disk 
#    joblib.dump(ldamodel_obj, os.path.join(base_name, mnb_modelname+".pkl"))
#
#    # Load trained model from disk
#    ldamodel_obj = joblib.load(os.path.join(base_name, mnb_modelname+".pkl"))
#    
#    # Print all the topics
#    for i,topic in enumerate(ldamodel_obj.print_topics(num_topics=3, num_words=10)):
#        #print("topic is {}".format(topic))
#        word = topic[1].split("+")
#        print("{} : {} ".format(topic[0], word))
#        
#    # actions are rows and discovered topics are columns
#    topic_action_map = np.zeros((real_topic, NUM_TOPICS))
#    
#    predicted_labels = []
#    #vids_list = list(df_train_mag.index)
#    for j,vname in enumerate(vids_list):
#        label_vid = train_labels[j]
#        # sort the tuples with descending topic probabilities
#        for index, score in sorted(ldamodel_obj[doc_term_matrix[j]], key=lambda tup: -1*tup[1]):
##        for index in [ldamodel_obj[doc_term_matrix[j]].argmax(axis=0)]:
#         #   print("Score is : {} of Topic: {}".format(score,index))
#            #if score>0.5:
#            #    topic_action_map[label_vid][index]+=1
##            score = ldamodel_obj[doc_term_matrix[j]][index]
#            topic_action_map[label_vid][index]+=score
#            predicted_labels.append(index)  
#            break
#    print("Training Time : topic action mapping is : ")
#    print("topic0  topic1  topic2")
#    #coloumn are topics and rows are labels
#    print(topic_action_map)
#    acc_values_tr, perm_tuples_tr, gt_list, pred_list = calculate_accuracy(train_labels,\
#                                                            predicted_labels)
#    acc_perc = [sum(k)/len(predicted_labels) for k in acc_values_tr]
#    
#    best_indx = acc_perc.index(max(acc_perc))
#    print("Max Acc. : ", max(acc_perc))
#    print("Acc values : ", acc_perc)
#    print("Acc values : ", acc_values_tr)
#    print("perm_tuples : ", perm_tuples_tr)
    
    #model_ang = joblib.load(os.path.join(destpath, mnb_modelname+"_ang.pkl"))
##################################################################################

    # Evaluation on validation set
    print("Validation phase ....")
    
    if not os.path.isfile(os.path.join(base_name, "hoof_feats_test_b"+str(nbins)+".pkl")):
        

#        features_val, strokes_name_id_val = select_trimmed_feats(c3dFC7FeatsPath, \
#                                                LABELS, val_lst, c3dWinSize) 
        features_val, strokes_name_id_val = extract_stroke_feats(DATASET, LABELS, test_lst, \
                                                         nbins, mth, True, grid) 
#        features_val, strokes_name_id_val = extract_feats(DATASET, LABELS, CLASS_IDS, BATCH_SIZE, 
#                                                  SEQ_SIZE, STEP, extractor='3dcnn', 
#                                                  part='val')
        with open(os.path.join(base_name, "hoof_feats_test_b"+str(nbins)+".pkl"), "wb") as fp:
            pickle.dump(features_val, fp)
        with open(os.path.join(base_name, "hoof_snames_test_b"+str(nbins)+".pkl"), "wb") as fp:
            pickle.dump(strokes_name_id_val, fp)
    else:
        with open(os.path.join(base_name, "hoof_feats_test_b"+str(nbins)+".pkl"), "rb") as fp:
            features_val = pickle.load(fp)
        with open(os.path.join(base_name, "hoof_snames_test_b"+str(nbins)+".pkl"), "rb") as fp:
            strokes_name_id_val = pickle.load(fp)

    print("Create dataframe BOVW validation set...")
    df_val_hoof, words_val = create_bovw_df(features_val, strokes_name_id_val, \
                                            km_model, base_name, "val")
    
    vids_list_val = list(df_val_hoof.index)
    val_labels = np.array([labs_values[labs_keys.index(v)] for v in vids_list_val])
    
#    topic_action_map_val = np.zeros((real_topic, NUM_TOPICS))
#    doc_clean_val = [doc.split() for doc in words_val]
#    # Creating Dictionary for val set words
#    diction_val=corpora.Dictionary(doc_clean_val)
#    
#    doc_term_matrix_val = [diction_val.doc2bow(doc) for doc in doc_clean_val]
#    predicted_label_val = []
#    for j,vname in enumerate(vids_list_val):
#        label_vid = val_labels[j]
#        for index, score in sorted(ldamodel_obj[doc_term_matrix_val[j]], key=lambda tup: -1*tup[1]):
##        for index in [ldamodel_obj[doc_term_matrix[j]].argmax(axis=0)]:
##            score = ldamodel_obj[doc_term_matrix[j]][index]
#         #   print("Score is : {} of Topic: {}".format(score,index))
#            #if score>0.5:
#            #    topic_action_map_val[label_vid][index]+=1
#            topic_action_map_val[label_vid][index]+=score
#            predicted_label_val.append(index)  
#            break
#            
#    print(topic_action_map_val)
    
#    labs_df = pd.DataFrame(labels, index=vids_list, columns=['label'])
#    
    print("Evaluating on the validation set...")
#    evaluate(model_mag, df_test_mag, labs_df)
    
    # Find maximum permutation accuracy using predicted_label_val and label_val
#    acc_values, perm_tuples, gt_list, pred_list = calculate_accuracy(val_labels, \
#                                                        predicted_label_val)
#    acc_perc = [sum(k)/len(predicted_label_val) for k in acc_values]
#    
#    best_indx = acc_perc.index(max(acc_perc))
#    print("Max Acc. : ", max(acc_perc))
#    print("Acc values : ", acc_perc)
#    print("Acc values : ", acc_values)
#    print("perm_tuples : ", perm_tuples)
    
    ###########################################################################
    # Evaluate the BOW classifier (SVM)
    confusion_mat = np.zeros((NUM_TOPICS, NUM_TOPICS))
    pred = clf.predict(df_val_hoof)
    correct = 0
    for i,true_val in enumerate(val_labels):
        if pred[i] == true_val:
            correct+=1
        confusion_mat[pred[i], true_val]+=1
    print('#'*30)
    print("BOW Classification Results:")
    print("%d/%d Correct" % (correct, len(pred)))
    print("Accuracy = {} ".format( float(correct) / len(pred)))
    print("Confusion matrix")
    print(confusion_mat)
    return (float(correct) / len(pred))
Пример #3
0
    # Extract HOOF features 
    
    # Get feats for only the training videos. Get ordered histograms of freq
#    all_feats[np.isinf(all_feats)] = 0
    print("bin:{}, thresh:{} ".format(nbins, mth))    
    
    #####################################################################
    # read into dictionary {vidname: np array, ...}
    print("Loading features from disk...")
    #features = utils.readAllPartitionFeatures(c3dFC7FeatsPath, train_lst)
#    mainFeatures = utils.readAllPartitionFeatures(c3dFC7MainFeatsPath, train_lst_main)
#    features.update(mainFeatures)     # Merge dicts
    # get Nx4096 numpy matrix with columns as features and rows as window placement features
#    features, strokes_name_id = select_trimmed_feats(c3dFC7FeatsPath, LABELS, \
#                                    train_lst, c3dWinSize) 
    features, strokes_name_id = extract_stroke_feats(DATASET, LABELS, train_lst, \
                                                     nbins, mth, GRID_SIZE) 
#    with open(os.path.join(base_name, "feats.pkl"), "wb") as fp:
#        pickle.dump(features, fp)
        
    with open(os.path.join(base_name, "feats.pkl"), "rb") as fp:
        features = pickle.load(fp)
#   
    #####################################################################
    # get matrix of features from dictionary (N, vec_size)
    vecs = []
    for key in sorted(list(features.keys())):
        vecs.append(features[key])
    vecs = np.vstack(vecs)
    #fc7 layer output size (4096) 
    INP_VEC_SIZE = vecs.shape[-1]
    print("INP_VEC_SIZE = ", INP_VEC_SIZE)