Пример #1
0
def get_padded_feature_stack(window_size, correction_switch, degree, pad=-1):
    
    eigen_full=extract_polarimetric.eigen_raster_full(window_size, correction_switch, degree) #9 is the window size
    cov_arr=extract_polarimetric.extract_covariance_arr(window_size, correction_switch, degree)
    
    #padding=int(np.floor(window_size/2))
    
    padding=window_size//2 if pad!=0 else 0
    
    Ihh=np.pad(cov_arr[...,0,0], padding, 'constant')
    Ihv=np.pad(cov_arr[...,1,1], padding, 'constant')
    Ivv=np.pad(cov_arr[...,2,2], padding, 'constant')
    arr_lamb1=np.pad(eigen_full[:,:,2], padding, 'constant')
    arr_lamb2=np.pad(eigen_full[:,:,1], padding, 'constant')
    arr_lamb3=np.pad(eigen_full[:,:,0], padding, 'constant')
    
    co_pol_dif=np.pad(extract_polarimetric.co_pol_diff(cov_arr), padding, 'constant')
    arr_det_cov=np.pad(np.absolute(extract_polarimetric.determinant_cov_conj(cov_arr)), padding, 'constant')
    
    R_co = Rco_X = np.pad(np.real(cov_arr[...,0,2]), padding, 'constant')
    Ico_X = np.pad(np.absolute(np.imag(cov_arr[...,0,2])), padding, 'constant')
    
    #return np.dstack((np.real(Ihh),np.real(Ihv),np.real(Ivv),np.real(arr_lamb1), np.real(arr_lamb2), np.real(arr_lamb3), np.absolute(co_pol_dif),R_co, Ico_X, np.absolute(arr_det_cov)))
    
    return np.dstack((np.real(Ihh),np.real(Ihv),np.real(Ivv),np.real(arr_lamb1), np.real(arr_lamb2), np.real(arr_lamb3), np.absolute(co_pol_dif), np.absolute(arr_det_cov)))#,R_co, Ico_X
Пример #2
0
def plot_feature_space_test(window_size):
    eigen_arr = extract_polarimetric.eigen_raster_full(window_size)
    cov_arr = extract_polarimetric.extract_covariance_arr(window_size, False)
    cppr = np.absolute(extract_polarimetric.co_pol_power_ratio_1(cov_arr))

    co_pol_diff = np.absolute(extract_polarimetric.co_pol_diff(cov_arr))
    lambda_3 = np.absolute(eigen_arr[:, :, 0])

    plot_feature_space(co_pol_diff, lambda_3)
Пример #3
0
def polarimetric_features(window_size):
    fig, ax = plt.subplots(nrows=2, ncols=3)

    #arr=extract_polarimetric.eigen_raster_full(window_size)
    cov_arr = extract_polarimetric.extract_covariance_arr(window_size, False)

    plt.subplot(2, 3, 1)
    plt.imshow(np.absolute(extract_polarimetric.co_pol_power_ratio_1(cov_arr)),
               cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Ivv/Ihh (Co-pol power ratio)')
    plt.colorbar()

    plt.subplot(2, 3, 2)
    plt.imshow(np.absolute(extract_polarimetric.determinant_cov(cov_arr)),
               cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Det(Cov)')
    plt.colorbar()

    plt.subplot(2, 3, 3)
    plt.imshow(np.absolute(extract_polarimetric.co_pol_diff(cov_arr)),
               cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Co-pol diff (Ihh-Ivv)')
    plt.colorbar()

    plt.subplot(2, 3, 4)
    plt.imshow(np.real(extract_polarimetric.co_pol_cross_product(cov_arr)),
               cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Real(ShhSvv) co-pol cross_product')
    plt.colorbar()

    plt.subplot(2, 3, 5)
    plt.imshow(np.imag(extract_polarimetric.co_pol_cross_product(cov_arr)),
               cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Imag(ShhSvv) Co-pol cross_product')
    plt.colorbar()

    plt.show()
Пример #4
0
def read_Pol_features(window_size, correction_switch, degree, rescale_switch = False, log_Transform_switch = False):
    #os.chdir('../')
    
    eigen_full = extract_polarimetric.eigen_raster_full(window_size, correction_switch, degree) #9 is the window size
    cov_arr = extract_polarimetric.extract_covariance_arr(window_size, correction_switch, degree)
    
    arr_lamb1=np.absolute(eigen_full[:,:,2])
    arr_lamb2=np.absolute(eigen_full[:,:,1])
    arr_lamb3=np.absolute(eigen_full[:,:,0])
    co_pol_dif=np.absolute(extract_polarimetric.co_pol_diff(cov_arr))
    arr_det_cov=np.absolute(extract_polarimetric.determinant_cov_conj(cov_arr))
    Rco_X = np.real(cov_arr[...,0,2])
    Ico_X = abs(np.imag(cov_arr[...,0,2]))
    I_hh = np.absolute(cov_arr[...,0,0])
    I_hv = np.absolute(cov_arr[...,1,1])
    I_vv = np.absolute(cov_arr[...,2,2])
    
    if (log_Transform_switch ==True):
        arr_lamb1 = np.log10(arr_lamb1)
        arr_lamb2 = np.log10(arr_lamb2)
        arr_lamb3 = np.log10(arr_lamb3)
        co_pol_dif = np.log10(co_pol_dif)
        arr_det_cov = np.log10(arr_det_cov)
        Rco_X = np.log10(Rco_X)
        Ico_X = np.log10(Ico_X)
        I_hh = np.log10(I_hh)
        I_hv = np.log10(I_hv)
        I_vv = np.log10(I_vv)
    
    if(rescale_switch == True):
        arr_lamb1=rescale(arr_lamb1)
        arr_lamb2=rescale(arr_lamb2)
        arr_lamb3=rescale(arr_lamb3)
        co_pol_dif = rescale(co_pol_dif)
        arr_det_cov = rescale(arr_det_cov)
        Rco_X = rescale(Rco_X)
        Ico_X = rescale(Ico_X)
        I_hh = rescale(I_hh)
        I_hv = rescale(I_hv)
        I_vv = rescale(I_vv)
    
    
    #if(log_Transform_switch ==True):
        #return 10*np.log10(np.dstack((arr_lamb1, arr_lamb2, arr_lamb3, co_pol_dif, arr_det_cov, Rco_X, Ico_X, I_hh, I_hv, I_vv)))
    #else:
    return np.dstack((arr_lamb1, arr_lamb2, arr_lamb3, co_pol_dif, arr_det_cov, Rco_X, Ico_X, I_hh, I_hv, I_vv))
Пример #5
0
def polarimetric_features(window_size, correction_switch):
    #fig, ax = plt.subplots(nrows=2, ncols=3)

    #arr=extract_polarimetric.eigen_raster_full(window_size)
    cov_arr = extract_polarimetric.extract_covariance_arr(
        window_size, correction_switch)

    #plt.subplot(2,3,1)
    plt.imshow(np.absolute(extract_polarimetric.co_pol_power_ratio_1(cov_arr)),
               cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Ivv/Ihh (Co-pol power ratio)')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'Ivv-Ihh_(Co-pol power ratio)' + '.tiff',
                dpi=300)
    plt.clf()

    #plt.subplot(2,3,2)
    plt.imshow(incidence_angle_corr.hist_stretch(
        np.absolute(extract_polarimetric.determinant_cov(cov_arr)), 6),
               cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Det(Cov)')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'Det(Cov)_stretched' + '.tiff',
                dpi=300)
    plt.clf()

    #plt.subplot(2,3,2)
    plt.imshow(np.absolute(extract_polarimetric.determinant_cov(cov_arr)),
               cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Det(Cov)')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'Det(Cov)' + '.tiff',
                dpi=300)
    plt.clf()

    #plt.subplot(2,3,3)
    plt.imshow(np.absolute(extract_polarimetric.co_pol_diff(cov_arr)),
               cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Co-pol diff (Ihh-Ivv)')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'Co-pol diff(Ihh-Ivv)' + '.tiff',
                dpi=300)
    plt.clf()

    #plt.subplot(2,3,4)
    plt.imshow(np.real(extract_polarimetric.co_pol_cross_product(cov_arr)),
               cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Real(ShhSvv) co-pol cross_product')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'Real(ShhSvv) co-pol cross_product' + '.tiff',
                dpi=300)
    plt.clf()

    #plt.subplot(2,3,5)
    plt.imshow(np.imag(extract_polarimetric.co_pol_cross_product(cov_arr)),
               cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Imag(ShhSvv) Co-pol cross_product')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'Imag(ShhSvv) Co-pol cross_product',
                dpi=300)
    plt.clf()
Пример #6
0
def main():

    plot_all_UAVSAR_data_takes()

    sys.exit()

    #UAVSAR_directory_name_prep

    base_dir = '../North_Sea_UAVSAR/UAV_norway'
    file_ext = [
        '.ann', '.dat', '.gif', '.hgt', '.inc', '.kmz', '.slope', '_hgt.tif',
        '_pauli.tif'
    ]
    #folders=['_mlc','_grd']
    dType = 'grd'
    Region = 'norway'
    Heading = '007'
    Counter_num = '09'
    Year = '15'
    Num_flights_year = '092'
    Data_take = '000'
    Day = '10'
    Month = '06'
    Band = 'L'
    Steering_angle = '090'
    Cross_talk = 'CX'
    Processing_version = '01'
    Polarization = 'HHHV'
    #====================================================

    Is_List_Ratio = False
    Cropping_switch = True
    Reproject_switch = False
    Plotting_switch = True
    Convolution_switch = False
    Inc_correction_switch = False
    Window_size_fea = 9
    Inc_correction_sin_degree = 3

    #====================================================

    wd = getdir(region=Region,
                heading=Heading,
                counter_num=Counter_num,
                year=Year,
                num_flights_year=Num_flights_year,
                data_take=Data_take,
                day=Day,
                month=Month,
                band=Band,
                steering_angle=Steering_angle,
                cross_talk=Cross_talk,
                processing_version=Processing_version)

    base_file_name = get_base_file_name(region=Region,
                                        heading=Heading,
                                        counter_num=Counter_num,
                                        year=Year,
                                        num_flights_year=Num_flights_year,
                                        data_take=Data_take,
                                        day=Day,
                                        month=Month,
                                        band=Band,
                                        steering_angle=Steering_angle,
                                        cross_talk=Cross_talk,
                                        processing_version=Processing_version)

    os.chdir(wd)
    #print(os.getcwd())

    #=======+Get Matadata========
    meta = metadata_dict(base_file_name)

    #===============SLC========================
    #directory_SLC='/home/anurag/Documents/MScProject/SAR/OilSpill/North_Sea_UAVSAR/UAV_norway/UA_norway_00709_15092_000_150610_L090_CX_02'
    #print(slc_file_name)
    #print(os.getcwd())
    #print(meta)
    #print(os.getcwd())
    #os.chdir(directory_SLC)
    #slc_VV=get_SLC(meta,base_file_name, polarization='VV', dType='slc')
    #slc_HH=get_SLC(meta,base_file_name, polarization='HH', dType='slc')

    #=============Defining the subset=====================

    if dType == 'mlc':
        grd_cropping_list_00709 = [521, 1543, 4049,
                                   5233]  #[2000,3500,2500,4000]
        grd_cropping_list_18709 = [1000, 2300, 3250, 4450]
    elif dType == 'grd':
        grd_cropping_list_00709 = [2000, 3500, 2500, 4000]
        grd_cropping_list_18709 = [900, 2400, 3150, 4650]

    if Heading == '007':
        cropping_list_GRD = grd_cropping_list_00709
        if (Counter_num == '10'):
            cropping_list_GRD = [2500, 4000, 2500, 4000]
    elif Heading == '187':
        cropping_list_GRD = grd_cropping_list_18709
        if (Counter_num == '10'):
            cropping_list_GRD = [1400, 2900, 3150, 4650]

    elif Heading == '142':
        cropping_list_GRD = [2500, 4000, 2500, 4000]

    #===========Defining Convolution keranl===========

    Convolution_kernal = kernal(Window_size_fea)

    #============incidence angle=================

    grd_lines = int(meta['grd_pwr.set_rows'])
    grd_samples = int(meta['grd_pwr.set_cols'])

    inc_ang_arr = get_inc_angle(grd_lines,
                                grd_samples,
                                base_file_name,
                                cropping_list_GRD,
                                cropping_switch=Cropping_switch,
                                is_List_Ratio=Is_List_Ratio)
    #plt.imshow(inc_ang_arr)
    #plt.show()

    #=============Extract GRD Component=====================

    get_GRD_MLC(dType,
                meta,
                base_file_name,
                Convolution_kernal,
                inc_ang_arr,
                component=Polarization,
                grd_cropping_list=cropping_list_GRD,
                is_List_Ratio=False,
                cropping_switch=True,
                reproject_switch=False,
                plotting_switch=True,
                convolution_switch=True,
                inc_correction_switch=True)

    #=============Plot all data takes=======================

    #==================Get covariance matrix===============
    cov_arr = get_covariance_matrix_grd(
        dType,
        meta,
        base_file_name,
        Convolution_kernal,
        inc_ang_arr,
        inc_correction_sin_degree=Inc_correction_sin_degree,
        cropping_list_GRD=cropping_list_GRD,
        is_List_Ratio=Is_List_Ratio,
        cropping_switch=Cropping_switch,
        convolution_switch=Convolution_switch,
        inc_correction_switch=Inc_correction_switch)

    #=============Convert to T3=========
    coh_arr = get_coherecy_matrix_grd(cov_arr)

    #########################################
    #============Extraction of Pol. Features===========
    #########################################

    eigen_raster = eigen_raster_full(coh_arr)

    arr_lamb1 = eigen_raster[:, :, 2]
    arr_lamb2 = eigen_raster[:, :, 1]
    arr_lamb3 = eigen_raster[:, :, 0]

    #============get_co_pol_diff============
    co_pol_diff = extract_polarimetric.co_pol_diff(cov_arr)

    #================Plotting lambda 3 and co_pol diff===============
    #import sys
    #sys.exit()
    plt.subplot(221)
    plt.imshow(10 * np.log10(np.absolute(arr_lamb1)))
    plt.colorbar()

    plt.subplot(222)
    plt.imshow(10 * np.log10(np.absolute(arr_lamb2)))
    plt.colorbar()

    plt.subplot(223)
    plt.imshow(10 * np.log10(np.absolute(arr_lamb3)))
    plt.colorbar()

    plt.subplot(224)
    plt.imshow(np.log10(np.absolute(co_pol_diff)))
    plt.colorbar()

    plt.show()

    ######################################
    #=================EPFS===============
    ######################################
    ncomp = 3
    tolerance = 0.0001
    num_initialization = 1
    max_iteration = 200

    correction_switch = True
    window_size_fea = 9
    window_size_smoo = 1  #35
    window_size_boun = 3

    bin_size = 400
    font_size = 15

    #-------Plot histogram--------
    arr_1 = EPFS.rescale(np.log10(np.absolute(arr_lamb3)), clip_extremes=False)
    arr_3 = EPFS.rescale(np.log10(np.absolute(arr_lamb2)), clip_extremes=False)
    arr_4 = EPFS.rescale(np.log10(np.absolute(arr_lamb1)), clip_extremes=False)
    arr_2 = EPFS.rescale(np.log10(np.absolute(co_pol_diff)),
                         clip_extremes=False)

    plt.hist(arr_1.flatten(),
             bins=bin_size,
             rwidth=0.5,
             histtype='step',
             label='$\lambda_{3}$')
    plt.hist(arr_3.flatten(),
             bins=bin_size,
             rwidth=0.5,
             histtype='step',
             label='$\lambda_{2}$')
    plt.hist(arr_4.flatten(),
             bins=bin_size,
             rwidth=0.5,
             histtype='step',
             label='$\lambda_{1}$')
    plt.hist(arr_2.flatten(),
             bins=bin_size,
             rwidth=0.5,
             histtype='step',
             label='PD')

    plt.xlabel('Normalized values', fontsize=font_size)
    plt.ylabel('Frequency', fontsize=font_size)
    plt.legend()

    plt.show()

    #==========Stack of features===============
    feature_stack = np.dstack((arr_1, arr_2, arr_3, arr_4, cov_arr[..., 2, 2]))

    #-------Perform EPFS-----------
    gmm = EPFS.gmm_fitting_1(feature_stack,
                             ncomp,
                             tolerance=tolerance,
                             num_initial=num_initialization,
                             max_iteration=max_iteration)

    EPFS.plot_result(feature_stack, gmm, ncomp)
    #plt.show()

    #=========Co-pol_phase_diff===========
    '''
Пример #7
0
def plot_all_UAVSAR_data_takes():
    matplotlib.rcParams.update({'font.size': 3})
    #files = ['UA_norway_00709_15091_000_150610_L090_CX_01', 'UA_norway_18709_15091_001_150610_L090_CX_01',
    #'UA_norway_00710_15091_002_150610_L090_CX_01', 'UA_norway_18710_15091_003_150610_L090_CX_01',
    #'UA_norway_00709_15091_004_150610_L090_CX_01', 'UA_norway_18709_15091_005_150610_L090_CX_01',
    #'UA_norway_00710_15091_006_150610_L090_CX_01', 'UA_norway_18709_15091_007_150610_L090_CX_01',
    #'UA_norway_00709_15091_008_150610_L090_CX_01', 'UA_norway_18709_15091_009_150610_L090_CX_01',
    #'UA_norway_00709_15091_010_150610_L090_CX_01', 'UA_norway_18709_15091_011_150610_L090_CX_01',
    #'UA_norway_00709_15091_012_150610_L090_CX_01', 'UA_norway_18709_15091_013_150610_L090_CX_01',
    #'UA_norway_00709_15091_014_150610_L090_CX_01', 'UA_norway_14203_15091_015_150610_L090_CX_01',
    #'UA_norway_00709_15092_000_150610_L090_CX_01', 'UA_norway_18709_15092_001_150610_L090_CX_01',
    #'UA_norway_00709_15092_002_150610_L090_CX_01', 'UA_norway_18709_15092_003_150610_L090_CX_01',
    #'UA_norway_00709_15092_004_150610_L090_CX_01', 'UA_norway_18709_15092_005_150610_L090_CX_01']

    files = [
        'UA_norway_00709_15091_000_150610_L090_CX_01',
        'UA_norway_00709_15091_004_150610_L090_CX_01',
        'UA_norway_00709_15091_008_150610_L090_CX_01',
        'UA_norway_00709_15091_010_150610_L090_CX_01',
        'UA_norway_00709_15091_012_150610_L090_CX_01',
        'UA_norway_00709_15091_014_150610_L090_CX_01',
        'UA_norway_00709_15092_000_150610_L090_CX_01',
        'UA_norway_00709_15092_002_150610_L090_CX_01',
        'UA_norway_00709_15092_004_150610_L090_CX_01'
    ]

    for i, dir_base_file_name in enumerate(files):
        #dType = 'grd'
        dType = 'mlc'
        Region = 'norway'
        Heading = dir_base_file_name[10:13]
        Counter_num = dir_base_file_name[13:15]
        Year = '15'
        Num_flights_year = dir_base_file_name[18:21]
        Data_take = dir_base_file_name[22:25]
        Day = '10'
        Month = '06'
        Band = 'L'
        Steering_angle = '090'
        Cross_talk = 'CX'
        Processing_version = '01'
        Polarization = 'VVVV'
        #====================================================

        Is_List_Ratio = False
        Cropping_switch = True
        Reproject_switch = False
        Plotting_switch = True
        Convolution_switch = True
        Inc_correction_switch = True
        Window_size_fea = 9
        Inc_correction_sin_degree = 2

        #====================================================

        ncomp = 6
        tolerance = 0.0001
        num_initialization = 1
        max_iteration = 200

        window_size_smoo = 35

        bin_size = 400

        #=====================================================

        wd = getdir(region=Region,
                    heading=Heading,
                    counter_num=Counter_num,
                    year=Year,
                    num_flights_year=Num_flights_year,
                    data_take=Data_take,
                    day=Day,
                    month=Month,
                    band=Band,
                    steering_angle=Steering_angle,
                    cross_talk=Cross_talk,
                    processing_version=Processing_version)

        base_file_name = get_base_file_name(
            region=Region,
            heading=Heading,
            counter_num=Counter_num,
            year=Year,
            num_flights_year=Num_flights_year,
            data_take=Data_take,
            day=Day,
            month=Month,
            band=Band,
            steering_angle=Steering_angle,
            cross_talk=Cross_talk,
            processing_version=Processing_version)

        os.chdir(wd)
        #print(os.getcwd())

        #=======+Get Matadata========
        meta = metadata_dict(base_file_name)

        #=============Defining the subset=====================

        if dType == 'mlc':
            grd_cropping_list_00709 = [521, 1543, 4049,
                                       5233]  #[2000,3500,2500,4000]
            grd_cropping_list_18709 = [1000, 2300, 3250, 4450]
        elif dType == 'grd':
            grd_cropping_list_00709 = [2000, 3500, 2500, 4000]
            grd_cropping_list_18709 = [900, 2400, 3150, 4650]

        if Heading == '007':
            cropping_list_GRD = grd_cropping_list_00709
            if (Counter_num == '10'):
                cropping_list_GRD = [2500, 4000, 2500, 4000]
        elif Heading == '187':
            cropping_list_GRD = grd_cropping_list_18709
            if (Counter_num == '10'):
                cropping_list_GRD = [1400, 2900, 3150, 4650]

        elif Heading == '142':
            cropping_list_GRD = [2500, 4000, 2500, 4000]

        #===========Defining Convolution keranl===========

        Convolution_kernal = kernal(Window_size_fea)

        #============incidence angle=================

        grd_lines = int(meta['grd_pwr.set_rows'])
        grd_samples = int(meta['grd_pwr.set_cols'])

        inc_ang_arr = get_inc_angle(grd_lines,
                                    grd_samples,
                                    base_file_name,
                                    cropping_list_GRD,
                                    cropping_switch=Cropping_switch,
                                    is_List_Ratio=Is_List_Ratio)
        #inc_ang_arr = 0
        #plt.imshow(inc_ang_arr)
        #plt.show()

        #=============Extract GRD Component and plotting=====================
        plt.subplot(4, 6, i + 1)

        #grd_data = get_GRD_MLC(dType,meta, base_file_name,Convolution_kernal, inc_ang_arr, component = Polarization,grd_cropping_list=cropping_list_GRD, is_List_Ratio=False, cropping_switch=True, reproject_switch=False, plotting_switch=True, convolution_switch = True, inc_correction_switch=False, save_plot_switch = False)
        #time_stamp = meta['Date of Acquisition'][12:17]
        #plt.title(time_stamp + ['AM' if int(time_stamp[:2])<12 else ' PM' ][0], fontsize = 4)

        #plt.ylabel('Longitude' if((i)%6==0) else '', fontsize = 7)
        #plt.xlabel('Latitude' if (i>=18) else '', fontsize = 7)

        #plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/All_UAVSAR_plot_grd.tiff', dpi=300,bbox_inches='tight')
        #plt.show()
        cov_arr = get_covariance_matrix_grd(
            dType,
            meta,
            base_file_name,
            Convolution_kernal,
            inc_ang_arr,
            inc_correction_sin_degree=Inc_correction_sin_degree,
            cropping_list_GRD=cropping_list_GRD,
            is_List_Ratio=Is_List_Ratio,
            cropping_switch=Cropping_switch,
            convolution_switch=Convolution_switch,
            inc_correction_switch=Inc_correction_switch)

        #=============Convert to T3=========
        coh_arr = get_coherecy_matrix_grd(cov_arr)

        #########################################
        #============Extraction of Pol. Features===========
        #########################################

        eigen_raster = eigen_raster_full(coh_arr)

        arr_lamb1 = eigen_raster[:, :, 2]
        arr_lamb2 = eigen_raster[:, :, 1]
        arr_lamb3 = eigen_raster[:, :, 0]

        #============get_co_pol_diff============
        co_pol_diff = extract_polarimetric.co_pol_diff(cov_arr)
        arr_1 = 10 * np.log10(np.absolute(arr_lamb3))
        arr_2 = 10 * np.log10(np.absolute(co_pol_diff))

        feature_stack = np.dstack(
            (arr_1, arr_2))  #, arr_3, arr_4, cov_arr[...,2,2]))

        #-------Perform EPFS-----------
        gmm = EPFS.gmm_fitting_1(feature_stack,
                                 ncomp,
                                 tolerance=tolerance,
                                 num_initial=num_initialization,
                                 max_iteration=max_iteration)
        X = EPFS.prepare_X_all(feature_stack)
        shp = feature_stack.shape[:2]
        res = gmm.predict(X).reshape(shp[0], shp[1])
        im = plt.imshow(res.reshape(shp[0], shp[1]), cmap='RdYlBu')
        plt.ylabel('Azimuth' if ((i) % 6 == 0) else '', fontsize=7)
        plt.xlabel('Range' if (i >= 18) else '', fontsize=7)
        time_stamp = meta['Date of Acquisition'][12:17]
        plt.title(time_stamp +
                  ['AM' if int(time_stamp[:2]) < 12 else ' PM'][0],
                  fontsize=4)
    plt.tight_layout()
    #plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/Segmentation/Multi_temporal/Segmentation_ncomp_{}_inc_corr_degree_{}_tol10E-4.tiff'.format(str(ncomp),str(Inc_correction_sin_degree)), dpi=300,bbox_inches='tight')
    plt.show()