Пример #1
0
def save_distribs(lendistribname=ld_name):
    errorfield = 'TrialError'
    tnumfield = 'trial_type'
    eyefield = 'eyepos'
    os.chdir('data')
    d = u.load_separate(['.'], 'bootsy-bhvit-run[0-9]*.mat')
    ed = d[d[errorfield] == 0]
    os.chdir('..')
    fn, ff, nn, nf = 7, 8, 9, 10
    lens, looks, s_bs, s_es = es.get_fixtimes(ed, [fn, ff, nn, nf], 
                                              postthr='fixation_off')
    observed_lendistrib = np.concatenate(lens[nf] + lens[fn], axis=0)
    cp.dump(observed_lendistrib, open(lendistribname, 'wb'))
    return observed_lendistrib
Пример #2
0
def produce_eyes_plot_nums(resorted=True, save=False, fname=None):
    if resorted:
        pattern = 'bootsy-bhvit-rs-run[0-9]*.mat'
    else:
        pattern = 'bootsy-bhvit-run[0-9]*.mat'
    data = load_separate(['./data/'], pattern)
    data = data[data[error_field] == 0]
    datavplt = get_only_vplt(data)
    lc, xs = get_bias_tc(datavplt, winsize=1, winstep=1)
    lens, looks, s_bs, s_es = es.get_fixtimes(datavplt, [7, 8, 9, 10])
    for i, tt in enumerate(lens.keys()):
        cond_lens = np.concatenate(lens[tt], axis=1)
        if i == 0:
            all_lens = cond_lens
        else:
            all_lens = np.concatenate((all_lens, cond_lens), axis=0)
    plot_looks(lc, xs)
    if save and fname is not None:
        np.savez(open(fname, 'wb'), xs=xs, look_course=lc, fix_lens=all_lens)
    return lc, xs, all_lens