def test_classifier_server_get(): x_hotel = ['book a hotel', 'need a nice place to stay', 'any motels near by'] x_weather = ['what is the weather like', 'is it hot outside'] x_place = ['which place is this', 'where are we', 'where are you going', 'which place is it'] x_name = ['What is your name', 'Who are you', 'What do i call you', 'what are you called'] clf = Classifier() clf.fit(x_hotel, 'hotel') clf.fit(x_weather, 'weather') clf.fit(x_place, 'place') clf.fit(x_name, 'name') clf_serialized = clf.serialize() server = NLUServer(clf).serve(test=True) r = server.requests.get("/models/classifier/predict?input=will it rain today") assert r.text == 'weather' r = server.requests.get("/models/classifier/config") assert r.json() == clf_serialized
def test_classifier_serialization(self): x_hotel = ['book a hotel', 'need a nice place to stay', 'any motels near by'] x_weather = ['what is the weather like', 'is it hot outside'] clf1 = Classifier() clf1.fit(x_hotel, 'hotel') clf1.fit(x_weather, 'weather') config = clf1.serialize() clf2 = Classifier.deserialize(config) assert clf1.classes == clf2.classes test_inputs = ['will it rain today', 'find a place to stay'] for test_input in test_inputs: clf1_out = clf1.predict(test_input, return_probs=True) clf2_out = clf2.predict(test_input, return_probs=True) assert clf1_out == clf2_out
def test_classifier_serialization(): x_hotel = ['book a hotel', 'need a nice place to stay', 'any motels near by'] x_weather = ['what is the weather like', 'is it hot outside'] clf1 = Classifier() clf1.fit(x_hotel, 'hotel') clf1.fit(x_weather, 'weather') config = clf1.serialize() clf2 = Classifier.deserialize(config) assert clf1.classes == clf2.classes test_inputs = ['will it rain today', 'find a place to stay'] for test_input in test_inputs: clf1_out = clf1.predict(test_input, return_probs=True) clf2_out = clf2.predict(test_input, return_probs=True) assert clf1_out == clf2_out