def test_determinant(): from ezdxf.math import Matrix44 A = [ [2, 3, 2, 5], [5, 1, 4, 5], [1, 12, 3, 1], [7, 3, 2, 2], ] det = LUDecomposition(A).determinant() chk = Matrix44(*A) assert chk.determinant() == det
def test_LU_decomposition_inverse(): m = Matrix(matrix=EXPECTED_INVERSE) assert LUDecomposition(A).inverse() == m
def test_LU_decomposition_solve_matrix(): lu = LUDecomposition(A) result = lu.solve_matrix(zip(B1, B2, B3)) are_close_vectors(result.col(0), gauss_vector_solver(A, B1)) are_close_vectors(result.col(1), gauss_vector_solver(A, B2)) are_close_vectors(result.col(2), gauss_vector_solver(A, B3))
def test_LU_decomposition_solve_vector(): R = LUDecomposition(A).solve_vector(B1) are_close_vectors(R, SOLUTION_B1)