def get_valid_box(image, points):
    """
    Try to get a valid face box which meets the requirments.
    The function follows these steps:
        1. Try method 1, if failed:
        2. Try method 0, if failed:
        3. Return None
    """

    # Try method 1 first.
    def _get_postive_box(raw_boxes, points):
        for box in raw_boxes:
            # Move box down.
            diff_height_width = (box[3] - box[1]) - (box[2] - box[0])
            offset_y = int(abs(diff_height_width / 2))
            box_moved = move_box(box, [0, offset_y])

            # Make box square.
            square_box = get_square_box(box_moved)

            # Remove false positive boxes.
            if points_in_box(points, square_box):
                return square_box
        return None

    # Try to get a positive box from face detection results.
    _, raw_boxes = fd.get_facebox(image, threshold=0.5)
    positive_box = _get_postive_box(raw_boxes, points)
    if positive_box is not None:
        if box_in_image(positive_box, image) is True:
            return positive_box
        return fit_box(positive_box, image, points)
Пример #2
0
def extract_face(file, tail, count):
    """Extract face area from image."""
    image = read_image(file)

    conf, raw_boxes = fd.get_facebox(image=image, threshold=0.9)
    # fd.draw_result(image, conf, raw_boxes)

    for box in raw_boxes:
        # Move box down.
        diff_height_width = (box[3] - box[1]) - (box[2] - box[0])
        offset_y = int(abs(diff_height_width / 2))
        box_moved = pt.move_box(box, [0, offset_y])

        # Make box square.
        facebox = pt.get_square_box(box_moved)

        face_image = image[facebox[1]:facebox[3], facebox[0]:facebox[2]]

        # Save the Image.
        image_url = os.path.join(TARGET_DIR, str(count) + '-' + tail)
        if face_image.shape[0] * face_image.shape[1] != 0:
            preview_img = face_image.copy()
            preview_img = cv2.resize(preview_img, (512, 512))
            cv2.imshow('preview', preview_img)
            if cv2.waitKey() == 27:
                face_image = cv2.resize(face_image, (128, 128))
                cv2.imwrite(image_url, face_image)
                print("New file saved:", image_url)
                count += 1

    return face_image
def preview(point_file):
    """
    Preview points on image.
    """
    # Read the points from file.
    raw_points = read_points(point_file)

    # Safe guard, make sure point importing goes well.
    assert len(raw_points) == 68, "The landmarks should contain 68 points."

    # Read the image.
    head, tail = os.path.split(point_file)
    image_file = tail.split('.')[-2]
    img_jpg = os.path.join(head, image_file + ".jpg")
    img_png = os.path.join(head, image_file + ".png")
    if os.path.exists(img_jpg):
        img = cv2.imread(img_jpg)
    else:
        img = cv2.imread(img_png)

    #Faust add+[
    conf, facebox = fd.get_facebox(img, threshold=0.5)
    fd.draw_result(img, conf, facebox)
    #Faust add+]

    # Fast check: all points are in image.
    if points_are_valid(raw_points, img) is False:
        return None

    # Get the valid facebox.
    facebox = get_valid_box(img, raw_points)
    if facebox is None:
        print("Using minimal box.")
        facebox = get_minimal_box(raw_points)
    # fd.draw_box(img, [facebox], box_color=(255, 0, 0))

    # Extract valid image area.
    face_area = img[facebox[1]:facebox[3], facebox[0]:facebox[2]]

    # Check if resize is needed.
    width = facebox[2] - facebox[0]
    height = facebox[3] - facebox[1]
    if width != height:
        print('opps!', width, height)
    if (width != 128) or (height != 128):
        face_area = cv2.resize(face_area, (256, 256))

    # Show the result.
    cv2.imshow("face", face_area)
    if cv2.waitKey(10) == 27:
        cv2.waitKey()
Пример #4
0
def extract_face(image):

    conf, raw_boxes = fd.get_facebox(image=image, threshold=0.9)

    for box in raw_boxes:

        diff_height_width = (box[3] - box[1]) - (box[2] - box[0])
        offset_y = int(abs(diff_height_width / 2))
        box_moved = pt.move_box(box, [0, offset_y])

        facebox = pt.get_square_box(box_moved)

        if pt.box_in_image(facebox, image):
            return facebox

    return None
def extract_face(file):
    global new_img
    """Extract face area from image."""
    image = read_image(file)
    conf, raw_boxes = fd.get_facebox(image=image, threshold=0.9)
    # fd.draw_result(image, conf, raw_boxes)

    for box in raw_boxes:
        # Move box down.
        diff_height_width = (box[3] - box[1]) - (box[2] - box[0])
        offset_y = int(abs(diff_height_width / 2))
        box_moved = pt.move_box(box, [0, offset_y])

        # Make box square.
        facebox = pt.get_square_box(box_moved)

        face_image = image[facebox[1]:facebox[3], facebox[0]:facebox[2]]

        if face_image.shape[0] * face_image.shape[1] != 0:
            preview_img = face_image.copy()
            new_img = cv2.resize(preview_img, (128, 128))
    return new_img
Пример #6
0
def change_box(img, DATA_DIR, pointThr=40):
    '''
    实现框的转换,使其只剩下有特征点标记的框以及改变其大小,使其能包含所有的框
    :param img: 图片
    :pointthr:超过多少个点在框里判定这个框为有效框
    :data_dir:数据路径
    :return: 新的框的坐标
    '''
    confidences, faceboxes = fd.get_facebox(img, 0.5)
    points = pt.read_points(DATA_DIR)
    newFacebox = []
    m = 0
    for i in faceboxes:
        for j in points:
            if ((i[0] < j[0] < i[2]) and (i[1] < j[1] < i[3])):
                m = m + 1
        if m > pointThr:
            newFacebox.append(i)
            m = 0
    # print(faceboxes)
    # print(newFacebox)
    # print("$$$$$$$$$")
    newConf = [confidences[faceboxes.index(newFacebox[0])]]
    left_x, left_y, right_x, right_y = newFacebox[0]
    #将边界框的位置总体向下移动,移动的大小为边界框的高度与宽度之差的一半
    height = right_y - left_y
    width = right_x - left_x
    left_y = left_y + (height - width) / 2
    right_y = right_y + (height - width) / 2
    #使得其变为正方形
    if height != width:
        left_x = left_x - (height - width) / 2
        right_x = right_x + (height - width) / 2
    newFacebox = [[int(left_x), int(left_y), int(right_x), int(right_y)]]
    # print(newConf,newFacebox)
    return newConf, newFacebox
Пример #7
0
def process(video_dir, save_dir, train_file_list):
    minsize = 20
    #error =
    # if not os.path.exists(train_file_list):
    #     head, tail = os.path.split(train_file_list)
    #     os.makedirs(head)
    total_face = 0
    with open(train_file_list, 'a+') as f_trainList:
        for dir_path, dir_names, _ in os.walk(video_dir):
            # frame_count = 0
            for dir_name in dir_names:
                print('processing directory: ' + dir_path + '/' + dir_name)
                video_dir_name = os.path.join(dir_path, dir_name)
                if dir_name in ['Normal']:
                    label = '0'
                elif dir_name in ['Talking']:
                    label = '0'
                elif dir_name in ['Yawning']:
                    label = '1'
                else:
                    print("Too bad, label invalid.")
                    continue
                video_names = os.listdir(video_dir_name)

                for video_name in video_names:
                    # video = cv2.VideoCapture()
                    frame_count = -1
                    cap = cv2.VideoCapture(os.path.join(video_dir_name, video_name))
                    if cap.isOpened():
                        ftotal = cap.get(cv2.CAP_PROP_FRAME_COUNT)
                        read_success = True
                    else:
                        read_success = False
                    # cv2.imwrite(img_save_path, img)
                    while read_success:
                        read_success, img = cap.read()
                        try:
                            img.shape
                        except:
                            break
                        frame_count += 1
                        if frame_count % SAMPLE_STEP == 0:
                            # img = img.transpose(2, 0, 1)
                            conf, raw_boxes = fd.get_facebox(image=img, threshold=0.7)
                            if len(raw_boxes) == 0:
                                # if face can't be detected between n frames
                                print('***too sad, the face can not be detected!')
                                continue
                            elif len(raw_boxes) == 1:
                                bbox = raw_boxes[0]
                            elif len(raw_boxes) > 1:
                                #print('---multi detect!')
                                # idx = np.argsort(-raw_boxes[:, 4])
                                # TODO. sort
                                bbox = raw_boxes[0]
                            bbox = rectify_bbox(bbox, img)
                            x = int(bbox[0])
                            y = int(bbox[1])
                            w = int(bbox[2] - bbox[0])
                            h = int(bbox[3] - bbox[1])
                            face = img[y:y + h, x:x + w, :]
                            # cv2.imwrite('face.jpg', face)
                            face_sp = np.shape(face)
                            #if face_sp[0] <= 16 or face_sp[1] <= 16:
                            #    continue
                            face_resize = face

                            face_resize = cv2.resize(face_resize, (CROPPED_WIDTH, CROPPED_HEIGHT))

                            if DEBUG:
                                cv2.imshow('face', face)
                                ch = cv2.waitKey(40000) & 0xFF
                                cv2.imshow('face_trans', face_resize)
                                ch = cv2.waitKey(40000) & 0xFF
                                img = drawBoxes(img, bbox)
                                # for i in range(5):
                                #     cv2.circle(img, (point[i], point[5+i]), 2, [0, 0, 255])
                                cv2.imshow('img', img)
                                ch = cv2.waitKey(40000) & 0xFF
                                if ch == 27:
                                    break
                            total_face += 1
                            img_file_name = video_name.split('.')[0]
                            img_file_name = img_file_name + '-' + str(total_face) + '_' + str(label) + '.jpg'
                            # f_trainList.write(img_file_name + ' ' + label + '\n')
                            img_save_path = os.path.join(save_dir, img_file_name)
                            f_trainList.write(img_save_path + ' ' + label + '\n')

                            cv2.imwrite(img_save_path, face_resize)
                            # print('Processing %d / %d' % (frame_count, ftotal))
                    cap.release()
    print('Total face img: {}'.format(total_face))