def test_batched_face_locations(self):
        img = api.load_image_file(os.path.join(os.path.dirname(__file__), 'test_images', 'obama.jpg'))
        images = [img, img, img]

        batched_detected_faces = api.batch_face_locations(images, number_of_times_to_upsample=0)

        for detected_faces in batched_detected_faces:
            self.assertEqual(len(detected_faces), 1)
            self.assertEqual(detected_faces[0], (154, 611, 390, 375))
    def test_batched_face_locations(self):
        img = api.load_image_file(os.path.join(os.path.dirname(__file__), 'test_images', 'obama.jpg'))
        images = [img, img, img]

        batched_detected_faces = api.batch_face_locations(images, number_of_times_to_upsample=0)

        for detected_faces in batched_detected_faces:
            self.assertEqual(len(detected_faces), 1)
            self.assertEqual(detected_faces[0], (154, 611, 390, 375))
Пример #3
0
def save_keypoints_video(video_path, input_folder, output_folder, tolerance,
                         batch_size):
    video = cv2.VideoCapture(str(video_path))

    out_path = move_path(video_path, input_folder, output_folder)
    out_path = out_path.with_suffix('')
    known_faces = []
    frame_count = 0
    frames = []
    while video.isOpened():
        ret, frame = video.read()
        if ret:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frame = scale_frame(frame)
            frames.append(frame)

        if (len(frames) == batch_size) or not ret:
            batch_of_face_locations = face_recognition.batch_face_locations(
                frames,
                number_of_times_to_upsample=upsample,
                batch_size=batch_size)

            # Now let's list all the faces we found in all batch_size frames
            for i, face_locations in enumerate(batch_of_face_locations):
                frame_count += 1
                encodings, landmarks = face_recognition.face_encodings_and_landmarks(
                    frames[i], known_face_locations=locations)

                num_faces = landmarks.shape[0]
                if num_faces == 0:
                    continue

                for face_idx, (encoding, landmark_array) in enumerate(
                        zip(encodings, landmarks)):
                    distances = face_recognition.face_distance(
                        known_faces, encoding)
                    if len(distances) == 0 or distances.min() > tolerance:
                        known_idx = len(known_faces)
                        known_faces.append(encoding)
                    else:
                        known_idx = int(np.argmin(distances))
                        known_faces[known_idx] = np.mean(
                            [known_faces[known_idx], encoding], axis=0)

                    file_path = Path(out_path, F"{known_idx}",
                                     F"{frame_count}.npy")
                    file_path.parent.mkdir(parents=True, exist_ok=True)
                    np.save(file_path, landmark_array)

            # Clear the frames array to start the next batch
            frames = []

    print(F"finished video {out_path}")