Пример #1
0
    def __init__(self):
        self.settings_marshaller = settings.SettingsMarshaller()
        self.settings = self.settings_marshaller.settings
        self.face_recognizer = face_recognizer.FaceRecognizer(self.settings)

        self.gtk_window = gtk.Window(gtk.WINDOW_TOPLEVEL)
        self.gtk_window.connect("destroy", gtk.main_quit)
        self.gtk_window.connect("key_press_event", self.on_key_press_event)
        self.gtk_window.modify_bg(gtk.STATE_NORMAL, gtk.gdk.Color(0, 0, 0))

        self.gtk_fixed = gtk.Fixed()
        self.gtk_window.add(self.gtk_fixed)

        if self.settings.default_height is not None and self.settings.default_width is not None:
            self.gtk_window.set_default_size(self.settings.default_width, self.settings.default_height)
        self.gtk_window.fullscreen()

        self.gtk_fixed.show()
        self.gtk_window.show()
        self.screen_width, self.screen_height = self.gtk_window.get_size()

        self.gtk_drawing_area = gtk.DrawingArea()
        self.gtk_drawing_area.modify_bg(gtk.STATE_NORMAL, gtk.gdk.Color(0, 0, 0))
        self.gtk_drawing_area.connect("expose_event", self.expose_event)
        self.gtk_drawing_area.connect("configure_event", self.configure_event)
        self.gtk_drawing_area.set_size_request(self.screen_width, self.screen_height)
        self.gtk_pixmap = None
        self.gtk_fixed.add(self.gtk_drawing_area)
        self.gtk_drawing_area.show()

        #self.pixbuf_animation_blue_bird_iter = gtk.gdk.PixbufAnimation('images/bluebird.gif').get_iter()
        self.scene = scene.Scene()

        self.settings_marshaller.default_if_none('background_image_width', self.screen_width)
        self.settings_marshaller.default_if_none('background_image_height', self.screen_height)
        self.settings_marshaller.default_if_none('left_pad', 0)
        self.settings_marshaller.default_if_none('top_pad', 0)
        self.settings_marshaller.default_if_none('showing_background_image', False)
        self.settings_marshaller.default_if_none('showing_face_rectangles', False)
        self.settings_marshaller.default_if_none('recognition_threshold', 80)
        self.settings_marshaller.save()

        self.camera = self.get_camera()

        self.background_thread = threading.Thread(target=self.background_work)
        self.background_thread.daemon = True
        self.kill_background = False

        self.recognizing_face = False
        self.pending_delete_training = False
        self.temporary_notice_timer = None
        self.temporary_notice = None
Пример #2
0
import unittest
import face_recognizer
from skimage import io
import dlib

facer = face_recognizer.FaceRecognizer()
img_name = 'test/img/test_urgant.jpg'
img_name1 = 'test/img/urgant2.jpg'
img_name2 = 'test/img/mart1.jpg'


class RecognizerTest(unittest.TestCase):
    def test_points_file(self):
        try:
            predictor = dlib.shape_predictor(facer.points_file_name)
        except RuntimeError:
            predictor = []
        self.assertNotEqual(predictor, [])

    def test_model_file(self):
        try:
            model = dlib.face_recognition_model_v1(facer.model_file_name)
        except RuntimeError:
            model = []
        self.assertNotEqual(model, [])

    def test_load_model(self):
        failed = False
        try:
            facer.load_model(facer.model_file_name, facer.points_file_name)
        except Exception:
Пример #3
0
        - Display a found face, ask who's face this is, discard ""
     3. Incorporate RPi's camera module to constantly scan for faces
     4. If recognized face, load personalized document (browser?)
'''

import cv2, os
#import numpy as np
from PIL import Image
import face_recognizer

# Test if we already have a recognizer set

load_previous = "./last_recognizer.xml"
create_new = "./training_set"
#create_new = "./yalefaces"
recog = face_recognizer.FaceRecognizer(load_previous, create_new)
#recog.save_recognizer("./last_recognizer.xml")

path = "./testing_set"

# Append the images with the extension .sad into image_paths
#image_paths = [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.sad')]
image_paths = [os.path.join(path, f) for f in os.listdir(path)]
for image_path in image_paths:
    predict_image_pil = Image.open(image_path).convert('L')
    predict_image = np.array(predict_image_pil, 'uint8')
    cascade_path = "haarcascade_frontalface_default.xml"
    face_cascade = cv2.CascadeClassifier(cascade_path)
    faces = face_cascade.detectMultiScale(predict_image)
    for (x, y, w, h) in faces:
        #nbr_predicted, conf = recognizer.predict(predict_image[y: y + h, x: x + w])