def __init__(self, setup): """Initializes the local UBM-GMM tool chain with the given file selector object""" self.m_config = setup self.m_ubm = None UBMGMM.__init__(self, number_of_gaussians=self.m_config.n_gaussians) if hasattr(self.m_config, 'scoring_function'): self.m_scoring_function = self.m_config.scoring_function self.m_normalize_before_k_means = self.m_config.norm_KMeans #self.m_gaussians = self.m_config.n_gaussians self.m_training_threshold = self.m_config.convergence_threshold self.m_gmm_training_iterations = self.m_config.iterk self.m_variance_threshold = self.m_config.variance_threshold self.m_update_means = self.m_config.update_means self.m_update_variances = self.m_config.update_variances self.m_update_weights = self.m_config.update_weights self.m_responsibility_threshold = self.m_config.responsibilities_threshold self.m_relevance_factor = self.m_config.relevance_factor self.m_gmm_enroll_iterations = self.m_config.iterg_enrol self.use_unprojected_features_for_model_enrol = True
def project_gmm(self, feature_array): """Computes GMM statistics against a UBM, given an input 2D numpy.ndarray of feature vectors""" return UBMGMM.project(self, feature_array)