Пример #1
0
def calc_random_source(pointing_zd, pointing_az, wobble_distance):
    phi = np.random.uniform(0, 2 * np.pi, len(pointing_zd))

    r = wobble_distance / camera_distance_mm_to_deg(1)
    x = r * np.cos(phi)
    y = r * np.sin(phi)

    zd, az = camera_to_horizontal(x, y, pointing_zd, pointing_az)

    return zd, az
Пример #2
0
def test_there_and_back_again_horizontal():
    from fact.coordinates import camera_to_horizontal, horizontal_to_camera

    df = pd.DataFrame({
        'az_tracking': [0, 90, 270],
        'zd_tracking': [0, 10, 20],
        'timestamp':
        pd.date_range('2017-10-01 22:00Z', periods=3, freq='10min'),
        'x': [-100, 0, 150],
        'y': [0, 100, 0],
    })

    zd, az = camera_to_horizontal(df.x, df.y, df.zd_tracking, df.az_tracking)
    x, y = horizontal_to_camera(zd, az, df.zd_tracking, df.az_tracking)

    assert np.allclose(x, df.x)
    assert np.allclose(y, df.y)
Пример #3
0
def calc_source_features_common(
    prediction_x,
    prediction_y,
    source_zd,
    source_az,
    pointing_position_zd,
    pointing_position_az,
):
    result = {}

    k_zd, k_az = "zd_prediction", "az_prediction"
    result[k_zd], result[k_az] = camera_to_horizontal(
        prediction_x,
        prediction_y,
        pointing_position_zd,
        pointing_position_az,
    )
    result["theta_deg"] = calc_theta_camera(
        prediction_x,
        prediction_y,
        source_zd=source_zd,
        source_az=source_az,
        zd_pointing=pointing_position_zd,
        az_pointing=pointing_position_az,
    )

    theta_offs = calc_theta_offs_camera(
        prediction_x,
        prediction_y,
        source_zd=source_zd,
        source_az=source_az,
        zd_pointing=pointing_position_zd,
        az_pointing=pointing_position_az,
        n_off=5,
    )
    for i, theta_off in enumerate(theta_offs, start=1):
        result["theta_deg_off_{}".format(i)] = theta_off
    return result