Пример #1
0
    def __init__(self, opt, shared=None):
        # In general use a basic TorchAgent wherever possible
        super().__init__(opt, shared)
        if not shared:
            # this is not a shared instance of this class, so do full initialization

            # fairseq expects options to be in argparse format, instead of a dict
            # We also need to do some argument postprocessing and whatnot
            self.args, self.opt = _fairseq_opt_wrapper(opt)

            # seed the RNG
            torch.manual_seed(self.args.seed)

            # Just some identifying info
            self.id = "fairseq:{}".format(self.args.arch)

            # construct dictionaries for parlai frontend and fairseq backend
            self.dict = _FairseqDictionary(self.opt)

            # We need a placeholder task for fairseq
            self.task = _ParlaiTask(self.dict)

            # actually construct the model and generator
            model_class = models.ARCH_MODEL_REGISTRY[self.args.arch]
            self.model = model_class.build_model(self.args, self.task)
            self.generator = SequenceGenerator(
                [self.model],
                tgt_dict=self.dict,
                beam_size=self.args.beam,
                stop_early=(not self.args.no_early_stop),
                normalize_scores=(not self.args.unnormalized),
                len_penalty=self.args.lenpen,
            )
            # set up the grader and the trainer
            # TODO: maybe support label smoothing here
            self.criterion = CrossEntropyCriterion(self.args, self.task)

            if self.args.fp16:
                self.trainer = fp16_trainer.FP16Trainer(
                    self.args, self.task, self.model, self.criterion
                )
            else:
                # TODO: we might choose to add a --no-fp16 opt in the future to
                # explicitly disable fp16 instead
                if torch.cuda.get_device_capability(0)[0] >= 7:
                    print("Heads up: using --fp16 could be a lot faster!")
                self.trainer = trainer.Trainer(
                    self.args, self.task, self.model, self.criterion
                )

            # if the model already existed, let's preload it and the trainer
            if self.opt.get('model_file') and os.path.isfile(self.opt['model_file']):
                print('Loading existing model params from ' + self.opt['model_file'])
                self.load(self.opt.get('model_file'))

            # move things to the GPU if possible
            if self.use_cuda:
                self.model = self.model.cuda()
                self.generator = self.generator.cuda()

        # Start things off clean
        self.reset()
Пример #2
0
    def __init__(self, opt, shared=None):
        # In general use a basic TorchAgent wherever possible
        super().__init__(opt, shared)
        if not shared:
            # this is not a shared instance of this class, so do full initialization

            # check early if we're going to be loading the model from a checkpoint
            model_file_exists = (self.opt.get('model_file')
                                 and os.path.isfile(self.opt['model_file']))

            # fairseq expects options to be in argparse format, instead of a dict
            # We also need to do some argument postprocessing and whatnot
            # We'll skip pretrained embeddings if we're going to override them with
            # a model checkpoint anyway
            self.args, self.opt = _fairseq_opt_wrapper(opt, model_file_exists)

            # seed the RNG
            torch.manual_seed(self.args.seed)

            # Just some identifying info
            self.id = "fairseq:{}".format(self.args.arch)

            # We need a placeholder task for fairseq
            self.task = _ParlaiTask(self.dict)

            # actually construct the model and generator
            self.model = self.build_model()

            # Construct the generator and scorer
            self.generator = SequenceGenerator(
                [self.model],
                tgt_dict=self.dict,
                beam_size=self.args.beam,
                stop_early=(not self.args.no_early_stop),
                normalize_scores=(not self.args.unnormalized),
                len_penalty=self.args.lenpen,
                unk_penalty=self.args.unkpen,
                sampling=self.args.sampling,
                sampling_topk=self.args.sampling_topk,
                sampling_temperature=self.args.sampling_temperature,
            )
            self.scorer = SequenceScorer([self.model], self.dict)

            # set up the grader and the trainer
            self.criterion = criterions.build_criterion(self.args, self.task)

            if getattr(self.args, 'fp16', None):
                self.trainer = fp16_trainer.FP16Trainer(
                    self.args, self.task, self.model, self.criterion)
            else:
                # TODO: we might choose to add a --no-fp16 opt in the future to
                # explicitly disable fp16 instead
                if torch.cuda.get_device_capability(0)[0] >= 7:
                    print("Heads up: using --fp16 could be a lot faster!")
                self.trainer = trainer.Trainer(self.args, self.task,
                                               self.model, self.criterion)

            # if the model already existed, let's preload it and the trainer
            if model_file_exists:
                print('Loading existing model params from ' +
                      self.opt['model_file'])
                self.load(self.opt.get('model_file'))

            # move things to the GPU if possible
            if self.use_cuda:
                self.model = self.model.cuda()
                self.generator = self.generator.cuda()
        else:
            self.model = shared['model']
            self.trainer = shared['trainer']
            self.generator = shared['generator']
            self.dict = shared['dict']
            self.args = shared['args']

        # Start things off clean
        self.reset()