def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): """ Generate batches for inference. We assume that the input begins with a bos symbol (`<s>`) and ends with an eos symbol (`</s>`). """ pad = self.source_dictionary.pad() eos = self.source_dictionary.eos() src_dataset = TokenBlockDataset( src_tokens, src_lengths, block_size=self.args.tokens_per_sample - 2, # for <s> and </s> pad=pad, eos=eos, break_mode=self.args.sample_break_mode, document_sep_len=0, ) prev_output_tokens = PrependTokenDataset( StripTokenDataset(src_dataset, eos), eos) src_dataset = PadDataset(src_dataset, pad_idx=pad, left_pad=False) return NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": src_dataset, "src_lengths": NumelDataset(src_dataset, reduce=False), "prev_output_tokens": PadDataset(prev_output_tokens, pad_idx=pad, left_pad=False), }, "target": src_dataset, }, sizes=[np.array(src_lengths)], )
def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True): src_dataset = RightPadDataset( TokenBlockDataset( src_tokens, src_lengths, self.args.tokens_per_sample - 1, # one less for <s> pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ), pad_idx=self.source_dictionary.pad(), ) src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos()) src_dataset = NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": src_dataset, "src_lengths": NumelDataset(src_dataset, reduce=False), }, }, sizes=src_lengths, ) if sort: src_dataset = SortDataset(src_dataset, sort_order=[src_lengths]) return src_dataset
def src_dataset_tranform_func(self, src_lang, tgt_lang, dataset, spec=None): if self.args.lang_tok_replacing_bos_eos: # it is handled by self.alter_dataset_langtok # TODO: Unifiy with alter_dataset_langtok return dataset if spec is None: return dataset tok = self.get_encoder_langtok(src_lang, tgt_lang, spec) if tok: return PrependTokenDataset(dataset, tok) return dataset
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): """ Generate batches for inference. We prepend an eos token to src_tokens (or bos if `--add-bos-token` is set) and we append a <pad> to target. This is convenient both for generation with a prefix and LM scoring. """ dataset = StripTokenDataset( TokenBlockDataset( src_tokens, src_lengths, block_size=None, # ignored for "eos" break mode pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ), # remove eos from (end of) target sequence self.source_dictionary.eos(), ) src_dataset = PrependTokenDataset( dataset, token=( self.source_dictionary.bos() if getattr(self.args, "add_bos_token", False) else self.source_dictionary.eos() ), ) tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad()) return NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": PadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), "src_lengths": NumelDataset(src_dataset, reduce=False), }, "target": PadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False ), }, sizes=[np.array(src_lengths)], )
def tgt_dataset_tranform_func(self, source_lang, target_lang, dataset, spec=None): if dataset is None: # note that target dataset can be None during inference time return None if self.args.lang_tok_replacing_bos_eos: # TODO: Unifiy with alter_dataset_langtok # It is handled by self.alter_dataset_langtok. # The complication in self.alter_dataset_langtok # makes a unified framework difficult. return dataset # if not self.args.decoder_langtok: if not spec: return dataset tok = self.get_decoder_langtok(target_lang, spec) if tok: return PrependTokenDataset(dataset, tok) return dataset
def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) dataset = data_utils.load_indexed_dataset( split_path, self.dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError("Dataset not found: {} ({})".format( split, split_path)) dataset = StripTokenDataset(dataset, self.dictionary.eos()) dataset = maybe_shorten_dataset( dataset, split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.tokens_per_sample, self.args.seed, ) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 2, # one less for <s> and one for </s> pad=self.dictionary.pad(), eos=self.dictionary.eos(), break_mode=self.args.sample_break_mode, document_sep_len=0, ) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) dataset = AppendTokenDataset(dataset, self.source_dictionary.eos()) mask_whole_words = (get_whole_word_mask(self.args, self.source_dictionary) if self.args.mask_length != "subword" else None) self.datasets[split] = DenoisingDataset( dataset, dataset.sizes, self.dictionary, self.mask_idx, mask_whole_words, shuffle=self.args.shuffle_instance, seed=self.seed, args=self.args, ) logger.info( "Split: {0}, Loaded {1} samples of denoising_dataset".format( split, len(self.datasets[split]), ))
def load_lang_dataset( self, data_path, split, src, src_dict, tgt, tgt_dict, combine, dataset_impl, upsample_primary, max_source_positions, prepend_bos=False, load_alignments=False, truncate_source=False, ): src_datasets = [] tgt_datasets = [] for k in itertools.count(): split_k = split + (str(k) if k > 0 else "") # infer langcode if self.split_exists(split_k, src, tgt, src, data_path, dataset_impl): prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt)) elif self.split_exists(split_k, tgt, src, src, data_path, dataset_impl): prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src)) else: if k > 0: break else: logger.error( f"Dataset not found: {data_path}, {split_k}, {src}, {tgt}" ) raise FileNotFoundError( "Dataset not found: {} ({})".format(split, data_path)) src_dataset = self.load_data(prefix + src, src_dict, dataset_impl) if truncate_source: src_dataset = AppendTokenDataset( TruncateDataset( StripTokenDataset(src_dataset, src_dict.eos()), max_source_positions - 1, ), src_dict.eos(), ) src_datasets.append(src_dataset) tgt_datasets.append( self.load_data(prefix + tgt, tgt_dict, dataset_impl)) logger.info("{} {} {}-{} {} examples".format( data_path, split_k, src, tgt, len(src_datasets[-1]))) if not combine: break assert len(src_datasets) == len(tgt_datasets) if len(src_datasets) == 1: src_dataset, tgt_dataset = src_datasets[0], tgt_datasets[0] else: sample_ratios = [1] * len(src_datasets) sample_ratios[0] = upsample_primary src_dataset = ConcatDataset(src_datasets, sample_ratios) tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios) if prepend_bos: assert hasattr(src_dict, "bos_index") and hasattr( tgt_dict, "bos_index") src_dataset = PrependTokenDataset(src_dataset, src_dict.bos()) tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos()) align_dataset = None if load_alignments: align_path = os.path.join(data_path, "{}.align.{}-{}".format(split, src, tgt)) if indexed_dataset.dataset_exists(align_path, impl=dataset_impl): align_dataset = data_utils.load_indexed_dataset( align_path, None, dataset_impl) return src_dataset, tgt_dataset, align_dataset
def load_langpair_dataset( data_path, split, src, src_dict, tgt, tgt_dict, combine, dataset_impl, upsample_primary, left_pad_source, left_pad_target, max_source_positions, max_target_positions, prepend_bos=False, load_alignments=False, truncate_source=False, append_source_id=False, num_buckets=0, shuffle=True, pad_to_multiple=1, ): def split_exists(split, src, tgt, lang, data_path): filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang)) return indexed_dataset.dataset_exists(filename, impl=dataset_impl) src_datasets = [] tgt_datasets = [] for k in itertools.count(): split_k = split + (str(k) if k > 0 else "") # infer langcode if split_exists(split_k, src, tgt, src, data_path): prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt)) elif split_exists(split_k, tgt, src, src, data_path): prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src)) else: if k > 0: break else: raise FileNotFoundError("Dataset not found: {} ({})".format( split, data_path)) src_dataset = data_utils.load_indexed_dataset(prefix + src, src_dict, dataset_impl) if truncate_source: src_dataset = AppendTokenDataset( TruncateDataset( StripTokenDataset(src_dataset, src_dict.eos()), max_source_positions - 1, ), src_dict.eos(), ) src_datasets.append(src_dataset) tgt_dataset = data_utils.load_indexed_dataset(prefix + tgt, tgt_dict, dataset_impl) if tgt_dataset is not None: tgt_datasets.append(tgt_dataset) logger.info("{} {} {}-{} {} examples".format(data_path, split_k, src, tgt, len(src_datasets[-1]))) if not combine: break assert len(src_datasets) == len(tgt_datasets) or len(tgt_datasets) == 0 if len(src_datasets) == 1: src_dataset = src_datasets[0] tgt_dataset = tgt_datasets[0] if len(tgt_datasets) > 0 else None else: sample_ratios = [1] * len(src_datasets) sample_ratios[0] = upsample_primary src_dataset = ConcatDataset(src_datasets, sample_ratios) if len(tgt_datasets) > 0: tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios) else: tgt_dataset = None if prepend_bos: assert hasattr(src_dict, "bos_index") and hasattr( tgt_dict, "bos_index") src_dataset = PrependTokenDataset(src_dataset, src_dict.bos()) if tgt_dataset is not None: tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos()) eos = None if append_source_id: src_dataset = AppendTokenDataset(src_dataset, src_dict.index("[{}]".format(src))) if tgt_dataset is not None: tgt_dataset = AppendTokenDataset( tgt_dataset, tgt_dict.index("[{}]".format(tgt))) eos = tgt_dict.index("[{}]".format(tgt)) align_dataset = None if load_alignments: align_path = os.path.join(data_path, "{}.align.{}-{}".format(split, src, tgt)) if indexed_dataset.dataset_exists(align_path, impl=dataset_impl): align_dataset = data_utils.load_indexed_dataset( align_path, None, dataset_impl) tgt_dataset_sizes = tgt_dataset.sizes if tgt_dataset is not None else None return LanguagePairDataset( src_dataset, src_dataset.sizes, src_dict, tgt_dataset, tgt_dataset_sizes, tgt_dict, left_pad_source=left_pad_source, left_pad_target=left_pad_target, align_dataset=align_dataset, eos=eos, num_buckets=num_buckets, shuffle=shuffle, pad_to_multiple=pad_to_multiple, )
def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError("Dataset not found: {} ({})".format( split, split_path)) dataset = maybe_shorten_dataset( dataset, split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.tokens_per_sample, self.args.seed, ) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 1, # one less for <s> pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode=self.args.sample_break_mode, ) logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) # create masked input and targets mask_whole_words = (get_whole_word_mask(self.args, self.source_dictionary) if self.args.mask_whole_words else None) src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( dataset, self.source_dictionary, pad_idx=self.source_dictionary.pad(), mask_idx=self.mask_idx, seed=self.args.seed, mask_prob=self.args.mask_prob, leave_unmasked_prob=self.args.leave_unmasked_prob, random_token_prob=self.args.random_token_prob, freq_weighted_replacement=self.args.freq_weighted_replacement, mask_whole_words=mask_whole_words, mask_multiple_length=self.args.mask_multiple_length, mask_stdev=self.args.mask_stdev, ) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(src_dataset)) self.datasets[split] = SortDataset( NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": RightPadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), ), "src_lengths": NumelDataset(src_dataset, reduce=False), }, "target": RightPadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), ), "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_dataset, reduce=True), }, sizes=[src_dataset.sizes], ), sort_order=[ shuffle, src_dataset.sizes, ], )
def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] languages = sorted(name for name in os.listdir(data_path) if os.path.isdir(os.path.join(data_path, name))) logger.info("Training on {0} languages: {1}".format( len(languages), languages)) logger.info("Language to id mapping: ", {lang: id for id, lang in enumerate(languages)}) mask_whole_words = self._get_whole_word_mask() lang_datasets = [] for lang_id, language in enumerate(languages): split_path = os.path.join(data_path, language, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError("Dataset not found: {} ({})".format( split, split_path)) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 1, # one less for <s> pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode=self.args.sample_break_mode, ) logger.info("loaded {} blocks from: {}".format( len(dataset), split_path)) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( dataset, self.source_dictionary, pad_idx=self.source_dictionary.pad(), mask_idx=self.mask_idx, seed=self.args.seed, mask_prob=self.args.mask_prob, leave_unmasked_prob=self.args.leave_unmasked_prob, random_token_prob=self.args.random_token_prob, freq_weighted_replacement=self.args.freq_weighted_replacement, mask_whole_words=mask_whole_words, ) lang_dataset = NestedDictionaryDataset( { "net_input": { "src_tokens": PadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), "src_lengths": NumelDataset(src_dataset, reduce=False), }, "target": PadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_dataset, reduce=True), "lang_id": RawLabelDataset([lang_id] * src_dataset.sizes.shape[0]), }, sizes=[src_dataset.sizes], ) lang_datasets.append(lang_dataset) dataset_lengths = np.array( [len(d) for d in lang_datasets], dtype=float, ) logger.info("loaded total {} blocks for all languages".format( dataset_lengths.sum(), )) if split == self.args.train_subset: # For train subset, additionally up or down sample languages. sample_probs = self._get_sample_prob(dataset_lengths) logger.info( "Sample probability by language: ", { lang: "{0:.4f}".format(sample_probs[id]) for id, lang in enumerate(languages) }, ) size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths logger.info( "Up/Down Sampling ratio by language: ", { lang: "{0:.2f}".format(size_ratio[id]) for id, lang in enumerate(languages) }, ) resampled_lang_datasets = [ ResamplingDataset( lang_datasets[i], size_ratio=size_ratio[i], seed=self.args.seed, epoch=epoch, replace=size_ratio[i] >= 1.0, ) for i, d in enumerate(lang_datasets) ] dataset = ConcatDataset(resampled_lang_datasets) else: dataset = ConcatDataset(lang_datasets) lang_splits = [split] for lang_id, lang_dataset in enumerate(lang_datasets): split_name = split + "_" + languages[lang_id] lang_splits.append(split_name) self.datasets[split_name] = lang_dataset # [TODO]: This is hacky for now to print validation ppl for each # language individually. Maybe need task API changes to allow it # in more generic ways. if split in self.args.valid_subset: self.args.valid_subset = self.args.valid_subset.replace( split, ",".join(lang_splits)) with data_utils.numpy_seed(self.args.seed + epoch): shuffle = np.random.permutation(len(dataset)) self.datasets[split] = SortDataset( dataset, sort_order=[ shuffle, dataset.sizes, ], )
def load_dataset(self, split, combine=False, **kwargs): """Load a given dataset split (e.g., train, valid, test).""" def get_path(type, split): return os.path.join(self.args.data, type, split) def make_dataset(type, dictionary): split_path = get_path(type, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) return dataset input0 = make_dataset("input0", self.source_dictionary) input_options = [ make_dataset("input{idx}".format(idx=idx + 1), self.source_dictionary) for idx in range(self.args.num_classes) ] if self.args.separator_token is not None: input0 = PrependTokenDataset(input0, self.args.separator_token) src_tokens = [] for input_option in input_options: if self.args.init_token is not None: input_option = PrependTokenDataset(input_option, self.args.init_token) if self.args.max_option_length is not None: input_option = TruncateDataset( input_option, self.args.max_option_length ) src_token = ConcatSentencesDataset(input_option, input0) src_token = maybe_shorten_dataset( src_token, split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.max_positions, self.args.seed, ) src_tokens.append(src_token) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(src_tokens[0])) dataset = { "id": IdDataset(), "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_tokens[0], reduce=True), } for src_token_idx in range(len(src_tokens)): dataset.update( { "net_input{idx}".format(idx=src_token_idx + 1): { "src_tokens": RightPadDataset( src_tokens[src_token_idx], pad_idx=self.source_dictionary.pad(), ), "src_lengths": NumelDataset( src_tokens[src_token_idx], reduce=False ), } } ) label_path = "{}.label".format(get_path("label", split)) if os.path.exists(label_path): with open(label_path) as h: dataset.update( target=RawLabelDataset([int(x.strip()) for x in h.readlines()]) ) nested_dataset = NestedDictionaryDataset( dataset, sizes=[np.maximum.reduce([src_token.sizes for src_token in src_tokens])], ) if self.args.no_shuffle: dataset = nested_dataset else: dataset = SortDataset( nested_dataset, # shuffle sort_order=[shuffle], ) logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset))) self.datasets[split] = dataset return self.datasets[split]
def load_dataset(self, split, combine=False, **kwargs): """Load a given dataset split (e.g., train, valid, test).""" def get_path(key, split): return os.path.join(self.args.data, key, split) def make_dataset(key, dictionary): split_path = get_path(key, split) dataset = data_utils.load_indexed_dataset( split_path, dictionary, self.args.dataset_impl, combine=combine, ) return dataset input0 = make_dataset("input0", self.source_dictionary) assert input0 is not None, "could not find dataset: {}".format( get_path("input0", split)) input1 = make_dataset("input1", self.source_dictionary) if self.args.init_token is not None: input0 = PrependTokenDataset(input0, self.args.init_token) if input1 is None: src_tokens = input0 else: if self.args.separator_token is not None: input1 = PrependTokenDataset(input1, self.args.separator_token) src_tokens = ConcatSentencesDataset(input0, input1) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(src_tokens)) src_tokens = maybe_shorten_dataset( src_tokens, split, self.args.shorten_data_split_list, self.args.shorten_method, self.max_positions(), self.args.seed, ) dataset = { "id": IdDataset(), "net_input": { "src_tokens": RightPadDataset( src_tokens, pad_idx=self.source_dictionary.pad(), ), "src_lengths": NumelDataset(src_tokens, reduce=False), }, "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_tokens, reduce=True), } if self.args.add_prev_output_tokens: prev_tokens_dataset = RightPadDataset( RollDataset(src_tokens, 1), pad_idx=self.dictionary.pad(), ) dataset["net_input"].update( prev_output_tokens=prev_tokens_dataset, ) if not self.args.regression_target: label_dataset = make_dataset("label", self.label_dictionary) if label_dataset is not None: dataset.update(target=OffsetTokensDataset( StripTokenDataset( label_dataset, id_to_strip=self.label_dictionary.eos(), ), offset=-self.label_dictionary.nspecial, )) else: label_path = "{0}.label".format(get_path("label", split)) if os.path.exists(label_path): def parse_regression_target(i, line): values = line.split() assert ( len(values) == self.args.num_classes ), f'expected num_classes={self.args.num_classes} regression target values on line {i}, found: "{line}"' return [float(x) for x in values] with open(label_path) as h: dataset.update(target=RawLabelDataset([ parse_regression_target(i, line.strip()) for i, line in enumerate(h.readlines()) ])) nested_dataset = NestedDictionaryDataset( dataset, sizes=[src_tokens.sizes], ) if self.args.no_shuffle: dataset = nested_dataset else: dataset = SortDataset( nested_dataset, # shuffle sort_order=[shuffle], ) logger.info("Loaded {0} with #samples: {1}".format( split, len(dataset))) self.datasets[split] = dataset return self.datasets[split]