Пример #1
0
    def __init__(self, args, dictionary):
        super().__init__(dictionary)

        self.padding_idx = dictionary.pad()
        self.vocab_size = dictionary.__len__()
        self.max_positions = args.max_positions

        self.sentence_encoder = TransformerSentenceEncoder(
            padding_idx=self.padding_idx,
            vocab_size=self.vocab_size,
            num_encoder_layers=args.encoder_layers,
            embedding_dim=args.encoder_embed_dim,
            ffn_embedding_dim=args.encoder_ffn_embed_dim,
            num_attention_heads=args.encoder_attention_heads,
            dropout=args.dropout,
            attention_dropout=args.attention_dropout,
            activation_dropout=args.act_dropout,
            max_seq_len=self.max_positions,
            num_segments=args.num_segment,
            use_position_embeddings=not args.no_token_positional_embeddings,
            encoder_normalize_before=args.encoder_normalize_before,
            apply_bert_init=args.apply_bert_init,
            activation_fn=args.activation_fn,
            learned_pos_embedding=args.encoder_learned_pos,
        )

        self.share_input_output_embed = args.share_encoder_input_output_embed
        self.embed_out = None
        self.sentence_projection_layer = None
        self.sentence_out_dim = args.sentence_class_num
        self.lm_output_learned_bias = None

        # Remove head is set to true during fine-tuning
        self.load_softmax = not getattr(args, "remove_head", False)

        self.masked_lm_pooler = nn.Linear(
            args.encoder_embed_dim, args.encoder_embed_dim
        )
        self.pooler_activation = utils.get_activation_fn(args.pooler_activation_fn)

        self.lm_head_transform_weight = nn.Linear(
            args.encoder_embed_dim, args.encoder_embed_dim
        )
        self.activation_fn = utils.get_activation_fn(args.activation_fn)
        self.layer_norm = LayerNorm(args.encoder_embed_dim)

        self.lm_output_learned_bias = None
        if self.load_softmax:
            self.lm_output_learned_bias = nn.Parameter(torch.zeros(self.vocab_size))

            if not self.share_input_output_embed:
                self.embed_out = nn.Linear(
                    args.encoder_embed_dim, self.vocab_size, bias=False
                )

            if args.sent_loss:
                self.sentence_projection_layer = nn.Linear(
                    args.encoder_embed_dim, self.sentence_out_dim, bias=False
                )
Пример #2
0
    def __init__(self, args):
        super().__init__()
        self.args = args
        self.embed_dim = args.encoder_embed_dim
        self.quant_noise = getattr(args, 'quant_noise_pq', 0)
        self.quant_noise_block_size = getattr(
            args, 'quant_noise_pq_block_size', 8) or 8
        self.self_attn = self.build_self_attention(self.embed_dim, args)
        self.self_attn_layer_norm = LayerNorm(self.embed_dim)
        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__)
        self.activation_fn = utils.get_activation_fn(
            activation=getattr(args, 'activation_fn', 'relu') or "relu")
        activation_dropout_p = getattr(args, "activation_dropout", 0) or 0
        if activation_dropout_p == 0:
            # for backwards compatibility with models that use args.relu_dropout
            activation_dropout_p = getattr(args, "relu_dropout", 0) or 0
        self.activation_dropout_module = FairseqDropout(
            float(activation_dropout_p), module_name=self.__class__.__name__)
        self.normalize_before = args.encoder_normalize_before
        self.fc1 = self.build_fc1(
            self.embed_dim,
            args.encoder_ffn_embed_dim,
            self.quant_noise,
            self.quant_noise_block_size,
        )
        self.fc2 = self.build_fc2(
            args.encoder_ffn_embed_dim,
            self.embed_dim,
            self.quant_noise,
            self.quant_noise_block_size,
        )

        self.final_layer_norm = LayerNorm(self.embed_dim)
Пример #3
0
 def __init__(self, input_dim, inner_dim, num_classes, activation_fn,
              pooler_dropout):
     super().__init__()
     self.dense = ColumnParallelLinear(input_dim,
                                       inner_dim,
                                       gather_output=True)
     self.activation_fn = utils.get_activation_fn(activation_fn)
     self.dropout = nn.Dropout(p=pooler_dropout)
     self.out_proj = nn.Linear(inner_dim, num_classes)
Пример #4
0
    def __init__(self, embed_dim, output_dim, activation_fn, weight=None):
        super().__init__()
        self.dense = nn.Linear(embed_dim, embed_dim)
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.layer_norm = LayerNorm(embed_dim)

        if weight is None:
            weight = nn.Linear(embed_dim, output_dim, bias=False).weight
        self.weight = weight
        self.bias = nn.Parameter(torch.zeros(output_dim))
Пример #5
0
    def __init__(self,
                 args,
                 no_encoder_attn=False,
                 add_bias_kv=False,
                 add_zero_attn=False):
        super().__init__()
        self.embed_dim = args.decoder_embed_dim
        self.self_attn = MultiheadAttention(
            embed_dim=self.embed_dim,
            num_heads=args.decoder_attention_heads,
            dropout=args.attention_dropout,
            add_bias_kv=add_bias_kv,
            add_zero_attn=add_zero_attn,
            self_attention=True,
        )
        self.dropout = args.dropout
        self.activation_fn = utils.get_activation_fn(
            activation=getattr(args, "activation_fn", "relu"))
        self.activation_dropout = getattr(args, "activation_dropout", 0)
        if self.activation_dropout == 0:
            # for backwards compatibility with models that use args.relu_dropout
            self.activation_dropout = getattr(args, "relu_dropout", 0)
        self.normalize_before = args.decoder_normalize_before

        # use layerNorm rather than FusedLayerNorm for exporting.
        # char_inputs can be used to determint this.
        # TODO  remove this once we update apex with the fix
        export = getattr(args, "char_inputs", False)
        self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export)

        if no_encoder_attn:
            self.encoder_attn = None
            self.encoder_attn_layer_norm = None
        else:
            self.encoder_attn = MultiheadAttention(
                self.embed_dim,
                args.decoder_attention_heads,
                kdim=getattr(args, "encoder_embed_dim", None),
                vdim=getattr(args, "encoder_embed_dim", None),
                dropout=args.attention_dropout,
                encoder_decoder_attention=True,
            )
            self.encoder_attn_layer_norm = LayerNorm(self.embed_dim,
                                                     export=export)

        self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim)
        self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim)

        self.final_layer_norm = LayerNorm(self.embed_dim, export=export)
        self.need_attn = True

        self.onnx_trace = False
Пример #6
0
    def __init__(
        self,
        input_dim,
        inner_dim,
        num_classes,
        activation_fn,
        pooler_dropout,
        do_spectral_norm=False,
    ):
        super().__init__()
        self.dense = nn.Linear(input_dim, inner_dim)
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.dropout = nn.Dropout(p=pooler_dropout)
        self.out_proj = nn.Linear(inner_dim, num_classes)

        if do_spectral_norm:
            self.out_proj = torch.nn.utils.spectral_norm(self.out_proj)
Пример #7
0
 def __init__(self, args):
     super().__init__()
     self.embed_dim = args.encoder_embed_dim
     self.self_attn = MultiheadAttention(
         self.embed_dim,
         args.encoder_attention_heads,
         dropout=args.attention_dropout,
         self_attention=True,
     )
     self.self_attn_layer_norm = LayerNorm(self.embed_dim)
     self.dropout = args.dropout
     self.activation_fn = utils.get_activation_fn(
         activation=getattr(args, "activation_fn", "relu"))
     self.activation_dropout = getattr(args, "activation_dropout", 0)
     if self.activation_dropout == 0:
         # for backwards compatibility with models that use args.relu_dropout
         self.activation_dropout = getattr(args, "relu_dropout", 0)
     self.normalize_before = args.encoder_normalize_before
     self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim)
     self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim)
     self.final_layer_norm = LayerNorm(self.embed_dim)
Пример #8
0
    def __init__(
        self,
        embedding_dim: float = 768,
        ffn_embedding_dim: float = 3072,
        num_attention_heads: float = 8,
        dropout: float = 0.1,
        attention_dropout: float = 0.1,
        activation_dropout: float = 0.1,
        activation_fn: str = "relu",
        layer_norm_first: bool = False,
    ) -> None:

        super().__init__()
        # Initialize parameters
        self.embedding_dim = embedding_dim
        self.dropout = dropout
        self.activation_dropout = activation_dropout

        # Initialize blocks
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.self_attn = MultiheadAttention(
            self.embedding_dim,
            num_attention_heads,
            dropout=attention_dropout,
            self_attention=True,
        )

        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(self.activation_dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.layer_norm_first = layer_norm_first

        # layer norm associated with the self attention layer
        self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
        self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
        self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)

        # layer norm associated with the position wise feed-forward NN
        self.final_layer_norm = LayerNorm(self.embedding_dim)
Пример #9
0
 def __init__(
     self,
     input_dim,
     inner_dim,
     num_classes,
     activation_fn,
     pooler_dropout,
     q_noise=0,
     qn_block_size=8,
     do_spectral_norm=False,
 ):
     super().__init__()
     self.dense = nn.Linear(input_dim, inner_dim)
     self.activation_fn = utils.get_activation_fn(activation_fn)
     self.dropout = nn.Dropout(p=pooler_dropout)
     self.out_proj = apply_quant_noise_(nn.Linear(inner_dim, num_classes),
                                        q_noise, qn_block_size)
     if do_spectral_norm:
         if q_noise != 0:
             raise NotImplementedError(
                 "Attempting to use Spectral Normalization with Quant Noise. This is not officially supported"
             )
         self.out_proj = torch.nn.utils.spectral_norm(self.out_proj)
Пример #10
0
    def __init__(self,
                 args,
                 no_encoder_attn=False,
                 add_bias_kv=False,
                 add_zero_attn=False):
        super().__init__()
        self.embed_dim = args.decoder_embed_dim
        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__)
        self.quant_noise = getattr(args, "quant_noise_pq", 0)
        self.quant_noise_block_size = getattr(args,
                                              "quant_noise_pq_block_size", 8)

        self.cross_self_attention = getattr(args, "cross_self_attention",
                                            False)

        self.self_attn = self.build_self_attention(
            self.embed_dim,
            args,
            add_bias_kv=add_bias_kv,
            add_zero_attn=add_zero_attn,
        )

        self.activation_fn = utils.get_activation_fn(
            activation=str(args.activation_fn) if getattr(
                args, "activation_fn", None) is not None else "relu")
        activation_dropout_p = getattr(args, "activation_dropout", 0) or 0
        if activation_dropout_p == 0:
            # for backwards compatibility with models that use args.relu_dropout
            activation_dropout_p = getattr(args, "relu_dropout", 0) or 0
        self.activation_dropout_module = FairseqDropout(
            float(activation_dropout_p), module_name=self.__class__.__name__)
        self.normalize_before = args.decoder_normalize_before

        # use layerNorm rather than FusedLayerNorm for exporting.
        # char_inputs can be used to determint this.
        # TODO  remove this once we update apex with the fix
        export = getattr(args, "char_inputs", False)
        self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export)

        if no_encoder_attn:
            self.encoder_attn = None
            self.encoder_attn_layer_norm = None
        else:
            self.encoder_attn = self.build_encoder_attention(
                self.embed_dim, args)
            self.encoder_attn_layer_norm = LayerNorm(self.embed_dim,
                                                     export=export)

        self.fc1 = self.build_fc1(
            self.embed_dim,
            args.decoder_ffn_embed_dim,
            self.quant_noise,
            self.quant_noise_block_size,
        )
        self.fc2 = self.build_fc2(
            args.decoder_ffn_embed_dim,
            self.embed_dim,
            self.quant_noise,
            self.quant_noise_block_size,
        )

        self.final_layer_norm = LayerNorm(self.embed_dim, export=export)
        self.need_attn = True

        self.onnx_trace = False
    def __init__(
        self,
        embedding_dim: int = 768,
        ffn_embedding_dim: int = 3072,
        num_attention_heads: int = 8,
        dropout: float = 0.1,
        attention_dropout: float = 0.1,
        activation_dropout: float = 0.1,
        activation_fn: str = "relu",
        export: bool = False,
        q_noise: float = 0.0,
        qn_block_size: int = 8,
        init_fn: Callable = None,
    ) -> None:
        super().__init__()

        if init_fn is not None:
            init_fn()

        # Initialize parameters
        self.embedding_dim = embedding_dim
        self.num_attention_heads = num_attention_heads
        self.attention_dropout = attention_dropout
        self.q_noise = q_noise
        self.qn_block_size = qn_block_size

        self.dropout_module = FairseqDropout(
            dropout, module_name=self.__class__.__name__
        )
        self.activation_dropout_module = FairseqDropout(
            activation_dropout, module_name=self.__class__.__name__
        )

        # Initialize blocks
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.self_attn = self.build_self_attention(
            self.embedding_dim,
            num_attention_heads,
            dropout=attention_dropout,
            self_attention=True,
            q_noise=q_noise,
            qn_block_size=qn_block_size,
        )

        # layer norm associated with the self attention layer
        self.self_attn_layer_norm = LayerNorm(self.embedding_dim, export=export)

        self.fc1 = self.build_fc1(
            self.embedding_dim,
            ffn_embedding_dim,
            q_noise=q_noise,
            qn_block_size=qn_block_size,
        )
        self.fc2 = self.build_fc2(
            ffn_embedding_dim,
            self.embedding_dim,
            q_noise=q_noise,
            qn_block_size=qn_block_size,
        )

        # layer norm associated with the position wise feed-forward NN
        self.final_layer_norm = LayerNorm(self.embedding_dim, export=export)