Пример #1
0
def poisson_drift_rate(t=1,
                       t_onset=0.2,
                       tau=.5,
                       sigma=0.01,
                       rate=6.0,
                       n=10,
                       dt=1e-3,
                       min_rate=0,
                       name=None,
                       seed=None):
    """Simulate a Poisson population with an OU rate drift"""
    prng = np.random.RandomState(seed)

    times = create_times((0, t), dt)

    # OU as a difference equation
    x = min_rate
    rates = [x]
    for t in times[1:]:
        if t < t_onset:
            rates.append(x)
            continue

        # Last x
        xi = prng.normal(0, 1)

        # Drift, scaling the step by sigma * sqrt(tau)
        delta_x = (sigma * np.sqrt(tau) * xi) / tau
        x -= delta_x

        # Save
        rates.append(x)

    # Drop initial value
    rates = np.asarray(rates)

    # No negative rates
    rates[rates < min_rate] = min_rate

    # Sample xs with N poisson 'cells'
    nrns = neurons.Spikes(n, t, dt=dt, seed=seed)
    ns, ts = fsutil.to_spiketimes(times, nrns.poisson(rates))

    # -
    if name is not None:
        write_spikes(name, ns, ts)
        return None
    else:
        return ns, ts, times, rates
Пример #2
0
def poisson_impulse(t=1,
                    t_onset=0.2,
                    w=1,
                    rate=6,
                    n=10,
                    dt=1e-3,
                    name=None,
                    seed=None):
    """Simulate a pulse of spikes w seconds wide, starting at t_onset."""

    # Poisson sample the rate over w
    times = create_times((0, t), dt)
    nrns = neurons.Spikes(n, t, dt=dt, seed=seed)
    pulse = rates.square_pulse(times, rate, t_onset, w, dt, min_a=0)

    ns, ts = fsutil.to_spiketimes(times, nrns.poisson(pulse))

    if name is not None:
        write_spikes(name, ns, ts)
        return None
    else:
        return ns, ts
Пример #3
0
def poisson_oscillation(t=1,
                        t_onset=0.2,
                        n_cycles=10,
                        rate=6,
                        f=8,
                        phi=0,
                        n=10,
                        dt=1e-3,
                        min_rate=0.0,
                        name=None,
                        seed=None):
    """Simulate a Poisson population, oscillating"""

    # Define time
    times = fsutil.create_times(t, dt=dt)

    # Create rate wave, over times
    osc = (rate / 2 * (1 + np.sin((times * f * 2 * np.pi) + phi))) + min_rate

    # Truncate it to a n_cycle burst, starting at t_onset
    if np.isclose(f, 0.0):
        osc[:] = min_rate
    else:
        burst_l = (1 / float(f)) * n_cycles

        m = np.logical_not(
            np.logical_and(times >= t_onset, times <= (t_onset + burst_l)))
        osc[m] = min_rate

    # Sample osc with N poisson 'cells'
    nrns = neurons.Spikes(n, t, dt=dt, seed=seed)
    ns, ts = fsutil.to_spiketimes(times, nrns.poisson(osc))

    if name is not None:
        write_spikes(name, ns, ts)
        return None
    else:
        return ns, ts
Пример #4
0
def oscillatory_coupling(num_pop=50,
                         num_background=5,
                         t=5,
                         osc_rate=6,
                         f=6,
                         g=1,
                         g_max=1,
                         q=0.5,
                         stim_rate=12,
                         frac_std=.01,
                         m=8,
                         priv_std=0,
                         dt=0.001,
                         squelch=False,
                         save=None,
                         stim_seed=None,
                         seed=None):
    """Run a single OC simulation."""

    # -- Safety -------------------------------------------------------------
    if g > g_max:
        raise ValueError("g must be < g_max")
    min_rate = 2
    if stim_rate <= min_rate:
        raise ValueError(f"stim_rate must be greater {min_rate}")
    if f < 3:
        raise ValueError("f (freq) must be greater then 2")

    # q can't be exactly 0
    q += EPS

    # -- Init ---------------------------------------------------------------
    # Poisson neurons
    backspikes = neurons.Spikes(num_background, t, dt=dt, seed=seed)
    ocspikes = neurons.Spikes(num_pop,
                              t,
                              dt=dt,
                              private_stdev=priv_std,
                              seed=seed)
    times = ocspikes.times  # brevity

    # Set stim std. It must be relative to stim_rate
    stim_std = frac_std * stim_rate

    # -- Drives -------------------------------------------------------------
    # Create biases/drives
    d_bias = {}

    # Background is 2 Hz
    d_bias['back'] = rates.constant(times, 2)

    # Drives proper:
    # 1. O
    d_bias['osc'] = rates.osc(times, osc_rate, f)
    if squelch:
        d_bias['osc'] = rates.constant(times, osc_rate)

    # 2. S
    d_bias['stim'] = rates.stim(times,
                                stim_rate,
                                stim_std,
                                seed=stim_seed,
                                min_rate=min_rate)

    # -
    # Linear modulatons
    d_bias['mult'] = d_bias['stim'] * ((g_max - g + 1) * d_bias['osc'])
    d_bias['add'] = d_bias['stim'] + (g * d_bias['osc'])
    d_bias['sub'] = d_bias['stim'] - (g * d_bias['osc'])
    div = d_bias['stim'] / (g * d_bias['osc'])
    sub = d_bias['stim'] - (g * d_bias['osc'])
    d_bias['div_sub'] = (q * div) + ((1 - q) * sub)

    # -
    # Nonlinear transform (RELU)
    for k, v in d_bias.items():
        d_bias[k] = phi(v)

    # -- Simulate spiking ---------------------------------------------------
    # Create a ref stimulus
    stim_ref = d_bias["stim"]

    # Create the background pool.
    b_spks = backspikes.poisson(d_bias['back'])

    # Create OC outputs. This includes a null op stimulus, our baseline.
    d_spikes = {}
    for k in d_bias.keys():
        d_spikes[k + "_p"] = np.hstack([ocspikes.poisson(d_bias[k]), b_spks])

    # -- I ------------------------------------------------------------------
    # Scale stim
    y_ref = normalize(stim_ref)
    d_rescaled = {}
    d_rescaled["stim_ref"] = y_ref
    if not squelch:
        d_rescaled["osc_ref"] = normalize(d_bias["osc"])
    else:
        # Can't norm a single number
        d_rescaled["osc_ref"] = np.zeros_like(d_bias["osc"])

    # Calc MI and H
    d_mis = {}
    d_deltas = {}
    d_hs = {}
    d_py = {}

    # Save ref H and dist
    d_py["stim_ref"] = discrete_dist(y_ref, m)
    d_hs["stim_ref"] = discrete_entropy(y_ref, m)

    # p(y), H, MI following rate norm
    for k in d_spikes.keys():
        y = normalize(d_spikes[k].sum(1))
        d_rescaled[k] = y
        d_py[k] = discrete_dist(y, m)
        d_mis[k] = discrete_mutual_information(y_ref, y, m)
        d_hs[k] = discrete_entropy(y, m)

    # Change in MI
    for k in d_mis.keys():
        d_deltas[k] = d_mis[k] - d_mis["stim_p"]

    # -- LFP ----------------------------------------------------------------
    d_lfps = {}
    for k in d_spikes.keys():
        d_lfps[k] = create_lfps(d_spikes[k], tau=0.002, dt=.001)

    # -- Extract peak power -------------------------------------------------
    d_powers = {}
    d_centers = {}
    for k in d_lfps.keys():
        freq, spectrum = welch(d_lfps[k],
                               fs=1000,
                               scaling='spectrum',
                               average='median')
        max_i = np.argmax(spectrum)
        d_powers[k] = spectrum[max_i]
        d_centers[k] = freq[max_i]

    # -- Measure OC using PAC -----------------------------------------------
    low_f = (int(f - 2), int(f + 2))
    high_f = (80, 250)

    d_pacs = {}
    for k in d_lfps.keys():
        d_pacs[k] = pacfn(d_lfps['osc_p'], d_lfps[k], low_f, high_f)

    # -
    result = {
        'MI': d_mis,
        'dMI': d_deltas,
        'H': d_hs,
        'PAC': d_pacs,
        'power': d_powers,
        'center': d_centers,
        'p_y': d_py,
        'bias': d_bias,
        'spikes': d_spikes,
        'rescaled': d_rescaled,
        'lfp': d_lfps,
        'times': times
    }

    if save is not None:
        save_result(save, result)

    return result
Пример #5
0
n = 50  # neuron number
t = 5  # run 10 seconds

Istim = 2  # Avg rate of 'natural' stimulation
Sstim = 0.1 * Istim  # Avg st dev of natural firing
Iosc = 10  # Avg rate of the oscillation
f = 1  # Freq of oscillation
Iback = 10  # Avg rate of the background noise

# Timing
dt = 0.001
rate = 1 / dt

# -- SIM ---------------------------------------------------------------------
# Init spikers
nrns = neurons.Spikes(n, t, dt=dt, seed=42)
times = nrns.times  # brevity

# Create biases
osc = rates.osc(times, Iosc, f)
stim = rates.stim(times, Istim, Sstim, seed)
noise = rates.constant(times, Iback)

# Simulate spiking
spks_osc = nrns.poisson(osc)
spks_stim = nrns.poisson(stim)
spks_noise = nrns.poisson(noise)

# Reformat and plot a raster
spks = np.hstack([spks_osc, spks_stim, spks_noise])  # Stack 'em for plotting
ns, ts = util.to_spiketimes(times, spks)