Пример #1
0
def generate_data(model, batch_size):
    train_gen = SequenceFromDisk('train',
                                 batch_size, (299, 299),
                                 preprocessfunc=preprocess_input)
    valid_gen = SequenceFromDisk('validation',
                                 batch_size, (299, 299),
                                 preprocessfunc=preprocess_input)

    x_train = model.predict_generator(train_gen,
                                      use_multiprocessing=True,
                                      workers=8,
                                      verbose=1)
    x_valid = model.predict_generator(valid_gen,
                                      use_multiprocessing=True,
                                      workers=8,
                                      verbose=1)
    y_train = np.load(join(paths['data'], 'labels_train.npy'))
    y_valid = np.load(join(paths['data'], 'labels_validation.npy'))

    return x_train, x_valid, y_train, y_valid
Пример #2
0
        iaa.Fliplr(.5),
        sometimes(iaa.Affine(rotate=(-20, 20))),
        sometimes(iaa.AddToHueAndSaturation((-20, 20))),
        sometimes(iaa.GaussianBlur((0, 2.))),
        sometimes(iaa.ContrastNormalization((.5, 1.5), per_channel=True)),
        sometimes(iaa.Sharpen(alpha=(0, 1.), lightness=(.75, 1.5))),
        sometimes(iaa.Emboss(alpha=(0, 1.), strength=(0, 2.))),
        sometimes(iaa.Crop(px=(5, 15))),
    ])
    return seq.augment_images(batch)


for net in networks.keys():
    print('Loading training data for {}...'.format(net))
    img_size = 299
    val_gen = SequenceFromDisk('validation', 128, (img_size, img_size),
                               augment)

    #Load the trained network from model_build
    path_dict = paths
    with tf.device('/cpu:0'):
        model = load_network(net)
    model = multi_gpu_model(model)
    opt = SGD(lr=1e-4, momentum=.9)
    model.compile(loss='binary_crossentropy', optimizer=opt)

    cp = MultiGPUCheckpoint(join(paths['models'], '{}_val.h5'.format(net)),
                            monitor='loss')

    model.fit_generator(val_gen,
                        epochs=num_epochs,
                        use_multiprocessing=True,
Пример #3
0
from keras.utils import multi_gpu_model
from sklearn.metrics import f1_score
import keras.backend as K
import numpy as np
import tensorflow as tf

net_filenames = [
    'models/densenet201_val.h5',
    'models/inceptionresnetv2_val.h5',
    'models/inceptionv3_val.h5',
    'models/resnet50_val.h5',
    'models/xception_val.h5',
]

print('Creating test generator...')
test_gen = SequenceFromDisk('test', 128, (299, 299), preprocess_input)

print('Running predictions...')
preds = []
for net in net_filenames:
    with tf.device('/cpu:0'):
        model = load_model(net, compile=False)
    model = multi_gpu_model(model)
    p = model.predict_generator(test_gen,
                                use_multiprocessing=True,
                                workers=8,
                                verbose=1)
    preds.append(p)
    K.clear_session()

preds = np.stack(preds, axis=-1)
Пример #4
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from fashion_code.generators import SequenceFromDisk
from keras.applications.xception import preprocess_input
from keras.models import load_model
from sklearn.metrics import f1_score


model = load_model('models/xception.h5')
model.compile('adam', 'binary_crossentropy')
val_gen = SequenceFromDisk('validation', 128, (299, 299), preprocess_input)
labels = val_gen.get_all_labels()
preds = model.predict_generator(val_gen, verbose=1)

print(f1_score(labels, preds > .2, average='micro'))
def train_model(args):
    # Some variables
    batch_size = args.batch_size * args.gpus
    chpt = args.continue_from_chpt
    epochs = args.epochs
    lr_red = args.lr_reduction
    img_size = (299, 299)
    loss = 'binary_crossentropy'
    optimizer = Adam(decay=1e-6)
    use_multiprocessing = not args.windows
    workers = 0 if args.windows else 8
    if args.gcp:
        path_dict = GCP_paths
    else:
        path_dict = paths

    # Create and compile model
    if chpt:
        model = load_model(join(paths['models'], chpt))
    else:
        model = build_model(num_classes)
        if args.gpus > 1:
            model = multi_gpu_model(model, args.gpus)
    model.compile(optimizer=optimizer, loss=loss)

    # Create data generators
    if args.gcp:
        train_gen = SequenceFromGCP('validation',
                                    batch_size,
                                    img_size,
                                    preprocessfunc=preprocess_input)
        if args.create_submission:
            test_gen = SequenceFromGCP('test',
                                       batch_size,
                                       img_size,
                                       preprocessfunc=preprocess_input)
        else:
            test_gen = None
    else:
        train_gen = SequenceFromDisk('validation',
                                     batch_size,
                                     img_size,
                                     preprocessfunc=preprocess_input)
        if args.create_submission:
            test_gen = SequenceFromDisk('test',
                                        batch_size,
                                        img_size,
                                        preprocessfunc=preprocess_input)
        else:
            test_gen = None

    # Fit model
    save_file = join(paths['models'], args.save_filename)
    mc = ModelCheckpoint(save_file, monitor='loss', save_best_only=True)

    block_indices = []
    for i, layer in enumerate(model.layers):
        if 'mixed' in layer.name and len(block_indices) < 8:
            block_indices.append(i)
    block_indices.extend([248, 279])
    block_indices = block_indices[::-1]

    uc = Finetuning(block_indices, lr_reduction=lr_red)

    train_steps = args.train_steps or len(train_gen)

    model.fit_generator(
        train_gen,
        epochs=epochs,
        steps_per_epoch=train_steps,
        use_multiprocessing=use_multiprocessing,
        workers=workers,
        # This callback does validation, checkpointing and
        # submission creation
        callbacks=[uc, mc],
        verbose=1)
    '''
Пример #6
0
def train_model(NetworkConstr, aug_fun, preprocess_fun, args):
    # Some variables
    batch_size = args.batch_size
    chpt = args.continue_from_chpt
    epochs = args.epochs
    img_size = (299, 299)
    loss = 'binary_crossentropy'
    optimizer = Adam(decay=1e-6)
    use_multiprocessing = not args.windows
    workers = 0 if args.windows else 8
    if args.gcp:
        path_dict = GCP_paths
    else:
        path_dict = paths

    # Create and compile model
    if chpt:
        model = load_model(join(path_dict['models'], chpt))
    else:
        model = build_model(NetworkConstr, num_classes)
        if args.multi_gpu:
            model = multi_gpu_model(model, cpu_relocation=True)
        model.compile(optimizer=optimizer, loss=loss)

    # Create data generators
    if args.gcp:
        train_gen = SequenceFromGCP('train',
                                    batch_size,
                                    img_size,
                                    preprocessfunc=preprocess_fun)
        valid_gen = SequenceFromGCP('validation',
                                    batch_size,
                                    img_size,
                                    preprocessfunc=preprocess_fun)
        if args.create_submission:
            test_gen = SequenceFromGCP('test',
                                       batch_size,
                                       img_size,
                                       preprocessfunc=preprocess_fun)
        else:
            test_gen = None
    else:
        train_gen = SequenceFromDisk('train',
                                     batch_size,
                                     img_size,
                                     preprocessfunc=aug_fun)
        valid_gen = SequenceFromDisk('validation',
                                     batch_size,
                                     img_size,
                                     preprocessfunc=preprocess_fun)
        if args.create_submission:
            test_gen = SequenceFromDisk('test',
                                        batch_size,
                                        img_size,
                                        preprocessfunc=preprocess_fun)
        else:
            test_gen = None

    # Fit model
    if args.multi_gpu:
        pm = MultiGPUCheckpoint(join(path_dict['models'], args.save_filename),
                                verbose=1)
    else:
        pm = ModelCheckpoint(join(path_dict['models'], args.save_filename),
                             monitor='val_loss',
                             save_best_only=True)

    train_steps = args.train_steps or len(train_gen)

    model.fit_generator(train_gen,
                        epochs=epochs,
                        steps_per_epoch=train_steps,
                        validation_data=valid_gen,
                        use_multiprocessing=use_multiprocessing,
                        workers=workers,
                        callbacks=[pm],
                        verbose=1)
Пример #7
0
    # TODO: add random forest classifier

    transformer = nn_transformer()
    transformer.fit(x_train,
                    y_train,
                    validation_data=(x_valid, y_valid),
                    epochs=epochs,
                    verbose=1)
    transformer.save(join(paths['models'], save_filename))

    valid_preds = transformer.predict(
        x_valid, batch_size=batch_size, verbose=1) > threshold
    score = f1_score(y_valid, valid_preds, average='micro')
    print('F1 score on validation: {:.4f}'.format(score))

    if args.create_submission:
        print('Creating submission...')
        test_gen = SequenceFromDisk('test',
                                    batch_size, (299, 299),
                                    preprocessfunc=preprocess_input)
        initial_preds = model.predict_generator(test_gen,
                                                use_multiprocessing=True,
                                                workers=8,
                                                verbose=1)
        y_pred = transformer.predict(initial_preds,
                                     batch_size=batch_size,
                                     verbose=1)
        create_submission(y_pred, save_filename)

    sys.exit(0)
        sometimes(iaa.AddToHueAndSaturation((-20, 20))),
        sometimes(iaa.GaussianBlur((0, 2.))),
        sometimes(iaa.ContrastNormalization((.5, 1.5), per_channel=True)),
        sometimes(iaa.Sharpen(alpha=(0, 1.), lightness=(.75, 1.5))),
        sometimes(iaa.Emboss(alpha=(0, 1.), strength=(0, 2.))),
        sometimes(iaa.Crop(px=(5, 15))),
    ])
    return seq.augment_images(batch)


network = {'xfv3', 'xfv2'}

for net in network:
    print('Loading training data for {}...'.format(net))
    img_size = 200
    val_gen = SequenceFromDisk('validation', 64, (img_size, img_size))

    #Load the trained network from model_build
    #path_dict = paths
    #with tf.device('/cpu:0'):
    #    model = load_network(net)

    #model = multi_gpu_model(model)
    #    opt = SGD(lr=1e-4, momentum=.9)
    #    model.compile(loss='binary_crossentropy', optimizer=opt)

    # cp = MultiGPUCheckpoint(join(paths['models'], '{}_val.h5'.format(net)),
    # monitor='loss')

    # model.fit_generator(val_gen,
    # epochs=num_epochs,