Пример #1
0
 def init_hidden(self, batch_size):
     zeros = torch.zeros(batch_size, self.shared_hid)
     return utils.get_variable(zeros, self.use_cuda, requires_grad=False)
Пример #2
0
    def train_controller(self):
        """Fixes the shared parameters and updates the controller parameters.

        The controller is updated with a score function gradient estimator
        (i.e., REINFORCE), with the reward being c/valid_ppl, where valid_ppl
        is computed on a minibatch of validation data.

        A moving average baseline is used.

        The controller is trained for 2000 steps per epoch (i.e.,
        first (Train Shared) phase -> second (Train Controller) phase).
        """
        model = self.controller
        model.train()
        # Why can't we call shared.eval() here? Leads to loss
        # being uniformly zero for the controller.
        # self.shared.eval()

        avg_reward_base = None
        baseline = None
        adv_history = []
        entropy_history = []
        reward_history = []

        hidden = self.shared.init_hidden(self.batch_size)
        total_loss = 0
        valid_idx = 0
        for step in range(20):
            # sample models
            dags, log_probs, entropies = self.controller.sample(
                with_details=True)

            # calculate reward
            np_entropies = entropies.data.cpu().numpy()
            # No gradients should be backpropagated to the
            # shared model during controller training, obviously.
            with _get_no_grad_ctx_mgr():
                rewards, hidden = self.get_reward(dags, np_entropies, hidden,
                                                  valid_idx)

            reward_history.extend(rewards)
            entropy_history.extend(np_entropies)

            # moving average baseline
            if baseline is None:
                baseline = rewards
            else:
                decay = 0.95
                baseline = decay * baseline + (1 - decay) * rewards

            adv = rewards - baseline
            adv_history.extend(adv)

            # policy loss
            loss = -log_probs * utils.get_variable(
                adv, self.use_cuda, requires_grad=False)

            loss = loss.sum()  # or loss.mean()

            # update
            self.controller_optim.zero_grad()
            loss.backward()

            self.controller_optim.step()

            total_loss += utils.to_item(loss.data)

            if ((step % 50) == 0) and (step > 0):
                reward_history, adv_history, entropy_history = [], [], []
                total_loss = 0

            self.controller_step += 1
Пример #3
0
    def sample(self, batch_size=1, with_details=False, save_dir=None):
        """Samples a set of `args.num_blocks` many computational nodes from the
        controller, where each node is made up of an activation function, and
        each node except the last also includes a previous node.
        """
        if batch_size < 1:
            raise Exception(f'Wrong batch_size: {batch_size} < 1')

        # [B, L, H]
        inputs = self.static_inputs[batch_size]
        hidden = self.static_init_hidden[batch_size]

        activations = []
        entropies = []
        log_probs = []
        prev_nodes = []
        # The RNN controller alternately outputs an activation,
        # followed by a previous node, for each block except the last one,
        # which only gets an activation function. The last node is the output
        # node, and its previous node is the average of all leaf nodes.
        for block_idx in range(2 * (self.num_blocks - 1) + 1):
            logits, hidden = self.forward(inputs,
                                          hidden,
                                          block_idx,
                                          is_embed=(block_idx == 0))

            probs = F.softmax(logits, dim=-1)
            log_prob = F.log_softmax(logits, dim=-1)
            # .mean() for entropy?
            entropy = -(log_prob * probs).sum(1, keepdim=False)

            action = probs.multinomial(num_samples=1).data
            selected_log_prob = log_prob.gather(
                1, utils.get_variable(action, requires_grad=False))

            # why the [:, 0] here? Should it be .squeeze(), or
            # .view()? Same below with `action`.
            entropies.append(entropy)
            log_probs.append(selected_log_prob[:, 0])

            # 0: function, 1: previous node
            mode = block_idx % 2
            inputs = utils.get_variable(action[:, 0] +
                                        sum(self.num_tokens[:mode]),
                                        requires_grad=False)

            if mode == 0:
                activations.append(action[:, 0])
            elif mode == 1:
                prev_nodes.append(action[:, 0])

        prev_nodes = torch.stack(prev_nodes).transpose(0, 1)
        activations = torch.stack(activations).transpose(0, 1)

        dags = _construct_dags(prev_nodes, activations, self.func_names,
                               self.num_blocks)

        if save_dir is not None:
            for idx, dag in enumerate(dags):
                utils.draw_network(dag,
                                   os.path.join(save_dir, f'graph{idx}.png'))

        if with_details:
            return dags, torch.cat(log_probs), torch.cat(entropies)

        return dags
Пример #4
0
 def init_hidden(self, batch_size):
     zeros = torch.zeros(batch_size, self.controller_hid)
     return (utils.get_variable(zeros, self.use_cuda, requires_grad=False),
             utils.get_variable(zeros.clone(),
                                self.use_cuda,
                                requires_grad=False))
Пример #5
0
 def _get_default_hidden(key):
     return utils.get_variable(torch.zeros(key, self.controller_hid),
                               self.use_cuda,
                               requires_grad=False)