Пример #1
0
def iris_data():
    iris = datasets.load_iris()
    X = pd.DataFrame(iris.data[:, :2], columns=iris.feature_names[:2])
    y = pd.Series(iris.target, name="label", dtype=np.float32)
    return TabularDataLoaders.from_df(df=pd.concat([X, y], axis=1),
                                      cont_names=list(X.columns),
                                      y_names="label")
Пример #2
0
def fastai_model():
    iris = datasets.load_iris()
    X = pd.DataFrame(iris.data[:, :2], columns=iris.feature_names[:2])
    y = pd.Series(iris.target, name="label")
    dl = TabularDataLoaders.from_df(df=pd.concat([X, y], axis=1),
                                    cont_names=list(X.columns),
                                    y_names="label")
    model = tabular_learner(dl, metrics=accuracy, layers=[3])
    model.fit(1)
    return ModelWithData(model=model, inference_dataframe=X)
Пример #3
0
def data_loader():
    path = untar_data(URLs.ADULT_SAMPLE)

    dls = TabularDataLoaders.from_csv(
        path / "adult.csv",
        path=path,
        y_names="salary",
        cat_names=[
            "workclass",
            "education",
            "marital-status",
            "occupation",
            "relationship",
            "race",
        ],
        cont_names=["age", "fnlwgt", "education-num"],
        procs=[Categorify, FillMissing, Normalize],
    )
    return dls
Пример #4
0
def get_data_loaders():
    X, y = load_iris(return_X_y=True, as_frame=True)
    y = y.astype(np.float32)
    return TabularDataLoaders.from_df(X.assign(target=y),
                                      cont_names=list(X.columns),
                                      y_names=y.name)