def fcnn_train(train_input, train_output): clf = FullyConnectedNN() # print(clf) fcnn_learner = Learner(data=data, model=clf, loss_func=nn.CrossEntropyLoss(), metrics=accuracy) fcnn_learner.fit_one_cycle(5, 1e-2)
def fcnn_train(train_input, train_output, test_input, test_output): tensor_train_input = torch.from_numpy(train_input) tensor_train_output = torch.from_numpy(train_output[:, 1].astype(int)) tensor_test_input = torch.from_numpy(test_input) tensor_test_output = torch.from_numpy(test_output[:, 1].astype(int)) train_ds = ArrayDataset(tensor_train_input, tensor_train_output) test_ds = ArrayDataset(tensor_test_input, tensor_test_output) bs = 10 databunch = DataBunch.create(train_ds, test_ds, bs=bs) clf = FullyConnectedNN() # print(clf) fcnn_learner = Learner(data=databunch, model=clf, loss_func=nn.CrossEntropyLoss(), metrics=accuracy) fcnn_learner.fit_one_cycle(50, 1e-2) # breakpoint() return fcnn_learner