Пример #1
0
def predict_dataset(
        ds_type: str = 'test',
        cpu=True,
        sample_size=config.BEST_MODEL_PARAMS['sample_size'],
        with_oversampling=config.BEST_MODEL_PARAMS['with_oversampling'],
        with_focal_loss=config.BEST_MODEL_PARAMS['with_focal_loss'],
        with_weighted_loss=config.BEST_MODEL_PARAMS['with_weighted_loss'],
        confusion_matrix_filename='test_confusion_matrix'):

    learn = load_saved_learner(sample_size=sample_size,
                               with_oversampling=with_oversampling,
                               with_focal_loss=with_focal_loss,
                               with_weighted_loss=with_weighted_loss,
                               cpu=cpu)

    classes = {c: i for i, c in enumerate(learn.data.classes)}

    # create a DF with filepath and class label (int)
    data = pd.read_csv(config.PROCESSED_DATA_DIR / 'labels_full.csv')
    data = data[data['ds_type'] == ds_type][['name', 'label']]
    data['label_int'] = data.label.apply(lambda x: classes[x])

    print(f'Running predictions on {data.shape[0]} data samples')

    data['pred_probability'] = pd.Series(dtype=object)
    for k, i in enumerate(data.index):
        pred = learn.predict(
            open_image(config.PROCESSED_DATA_DIR / data.loc[i, 'name'],
                       convert_mode='L'))
        data.loc[i, 'y_pred'] = pred[0].data.item()
        data.at[i, 'pred_probability'] = pred[2].numpy()
        if k % 200 == 0 and k > 0:
            print(f'{k} images done..')

    data.to_csv(config.DATA_DIR / 'predictions.csv', index=False)

    print(f'Building classification interpretation..')
    interp = ClassificationInterpretation(
        learn=learn,
        losses=np.zeros(data.shape[0]),
        preds=tensor(data['pred_probability'].to_list()),
        y_true=tensor(data.label_int.to_list()))
    mat = interp.confusion_matrix()

    # sum diagonal / all data_size *100
    accuracy = np.trace(mat) / mat.sum() * 100

    print(mat)
    print(f'Accuracy: {accuracy}')

    interp.plot_confusion_matrix(return_fig=True).savefig(
        f'test_{confusion_matrix_filename}', dpi=200)
    joblib.dump(mat, f'test_{confusion_matrix_filename}.pkl')

    return mat, accuracy
Пример #2
0
def get_confusion(learner: str) -> str:
    from fastai.vision import ClassificationInterpretation
    import dill

    with open(learner, 'rb') as fp:
        learner = dill.load(fp)

    interpreter = ClassificationInterpretation.from_learner(learner)
    return str(interpreter.confusion_matrix())
def run_mnist(input_path,
              output_path,
              batch_size,
              epochs,
              learning_rate,
              model=Mnist_NN()):

    path = Path(input_path)

    ## Defining transformation
    ds_tfms = get_transforms(
        do_flip=False,
        flip_vert=False,
        max_rotate=15,
        max_zoom=1.1,
        max_lighting=0.2,
        max_warp=0.2,
    )

    ## Creating Databunch
    data = (ImageItemList.from_folder(path, convert_mode="L").split_by_folder(
        train="training", valid="testing").label_from_folder().transform(
            tfms=ds_tfms, size=28).databunch(bs=batch_size))

    ## Defining the learner
    mlp_learner = Learner(data=data,
                          model=model,
                          loss_func=nn.CrossEntropyLoss(),
                          metrics=accuracy)

    # Training the model
    mlp_learner.fit_one_cycle(epochs, learning_rate)

    val_acc = int(
        np.round(mlp_learner.recorder.metrics[-1][0].numpy().tolist(), 3) *
        1000)

    ## Saving the model
    mlp_learner.save("mlp_mnist_stg_1_" + str(val_acc))

    ## Evaluation
    print("Evaluating Network..")
    interp = ClassificationInterpretation.from_learner(mlp_learner)
    print(classification_report(interp.y_true, interp.pred_class))

    ## Plotting train and validation loss
    mlp_learner.recorder.plot_losses()
    plt.savefig(output_path + "/loss.png")

    mlp_learner.recorder.plot_metrics()
    plt.savefig(output_path + "/metric.png")
Пример #4
0
def evaluate_model(model, output_path, plot=True):
    """
    Function to evaluate model performance.
    Generates Classification report, loss and metric plot.
    """
    interp = ClassificationInterpretation.from_learner(model)
    print(classification_report(interp.y_true, interp.pred_class))

    if plot:
        # Plotting loss progression with each epoch
        model.recorder.plot_losses()
        plt.savefig(output_path + "/loss.png")

        # Plotting metric progression with each epoch
        model.recorder.plot_metrics()
        plt.savefig(output_path + "/metric.png")
Пример #5
0
    def on_train_end(self, **kwargs):
        "Load the best model."

        if self.save_model:
            # Adapted from fast.ai "SaveModelCallback"
            if self.model_path.is_file():
                with self.model_path.open('rb') as model_file:
                    self.learn.load(model_file, purge=False)
                    print('Loaded best saved model from {}'.format(
                        self.model_path))

        if self.confusion_matrix:
            interpret = ClassificationInterpretation.from_learner(self.learn)
            conf_plt = interpret.plot_confusion_matrix(dpi=self.conf_dpi, return_fig=True, title='Confusion Matrix')
            self.interpret = interpret

            wandb.log({"Confusion Matrix": wandb.Image(conf_plt)})
def run_shallownet(input_path, output_path, batch_size, epochs, learning_rate):

    path = Path(input_path)

    # Creating Databunch
    data = (
        ImageItemList.from_folder(path)
        .split_by_folder(train="train", valid="test")
        .label_from_folder()
        .transform(tfms=None, size=32)
        .databunch(bs=batch_size)
    )

    # Defining the learner
    sn_learner = Learner(
        data=data,
        model=ShallowNet(n_class=data.c, size=32, in_channels=3),
        loss_func=nn.CrossEntropyLoss(),
        metrics=accuracy,
    )

    # Training the model
    sn_learner.fit_one_cycle(epochs, learning_rate)

    val_acc = int(
        np.round(sn_learner.recorder.metrics[-1][0].numpy().tolist(), 3) * 1000
    )

    # Saving the model
    sn_learner.save("sn_cifar10_stg_1_" + str(val_acc))

    # Evaluation
    print("Evaluating Network..")
    interp = ClassificationInterpretation.from_learner(sn_learner)
    print(classification_report(interp.y_true, interp.pred_class))

    # Plotting train and validation loss
    sn_learner.recorder.plot_losses()
    plt.savefig(output_path + "/loss.png")

    sn_learner.recorder.plot_metrics()
    plt.savefig(output_path + "/metric.png")
Пример #7
0
    def train(self, epochs=10, firstrun=False, min_lr=None, interpret=False):
        """Trains the model and saves the best model

        Use One cycle scheduler for learning rate. The model with least test
        loss is saved as recentbest.pth in model_dir.

        Parameters
        ----------
        epochs : int, optional
            Number of epochs, by default 10
        firstrun : bool, optional
            If the frozen layers exist are unfreezed, by default False
        min_lr : double, optional
            The minimum learning rate for differential LRs, by default None
        interpret : bool, optional
            Show top losses after training, by default False
        """
        print("Training..")

        self.learn.fit_one_cycle(
            epochs,
            max_lr=slice(min_lr, 1e-3),
            callbacks=[
                callbacks.SaveModelCallback(self.learn, name="recentbest"),
                callbacks.ReduceLROnPlateauCallback(self.learn, patience=1),
            ],
        )

        self.learn.recorder.plot_losses()

        if interpret:
            self.interpretation = ClassificationInterpretation.from_learner(self.learn)
            print(self.interpretation.most_confused(min_val=2))

        if firstrun:
            self.learn.save("firstrun")
            self.learn.unfreeze()
            self.learn.fit_one_cycle(1)
            self.findlr()
Пример #8
0
from fastai.vision import models, get_transforms, cnn_learner, ImageDataBunch, imagenet_stats, ClassificationInterpretation
from fastai.metrics import accuracy

PATH = 'DATA PATH'

tfms = get_transforms(flip_vert=True,
                      max_lighting=0.1,
                      max_zoom=1.05,
                      max_warp=0.1)
data = ImageDataBunch.from_folder(PATH,
                                  ds_tfms=tfms,
                                  bs=64,
                                  size=224,
                                  num_workers=4).normalize(imagenet_stats)

model = cnn_learner(data, models.resnet34, metrics=accuracy, pretrained=True)
model.fit_one_cycle(5)

model.save('foodnotfoodv1')
model.unfreeze()
model.lr_find()
model.recorder.plot()

model.fit_one_cycle(2, max_lr=slice(1e-5, 1e-4))

interp = ClassificationInterpretation.from_learner(model)
interp.plot_confusion_matrix()

model.export()
def model_evaluation(learner):
    '''evaluate the trained model'''
    learn = learner.load('unfrozen-model')
    interp = ClassificationInterpretation.from_learner(learn)
    print(interp.plot_confusion_matrix())
    return None