Пример #1
0
def Main_Fun(dump_time_index, case, date):
     """Loops over ensemble cases.  Pulls temperature, pressure, height from nc output files using nchap_class
    gets height of mixed layer at each horizontal point using fast_fit and saves as a txt file.   

    Arguments:
    dump_time -- time of output eg '0000000720'
    case -- integer

    Returns:
    ML_Heights -- 128*192 array as txt file
    
    """
     dump_time_list, time_hrs = Make_Timelists(1, 3600, 28800)
    
     ncfile = "/tera2/nchaparr/"+ date +"/runs/sam_case" + str(case) + "/OUT_3D/keep/NCHAPP1_testing_doscamiopdata_24_" + dump_time_list[dump_time_index] + ".nc"
               
     thefile = ncfile
     print thefile
     ncdata = Dataset(thefile,'r')
          
          
     press = np.squeeze(ncdata.variables['p'][...])#pressure already horizontally averaged
     height = np.squeeze(ncdata.variables['z'][...])
     temp = np.squeeze(ncdata.variables['TABS'][...])
          #tracer = np.squeeze(ncdata.variables['TRACER'][...])
     ncdata.close()
     
          #calculate thetas
     theta = np.zeros_like(temp)
     thetafact = np.array([(1.0*1000/k)**(1.0*287/1004) for k in press])
     for j in range(312):
          theta[j, :, :] = temp[j, :, :]*thetafact[j]

     ML_Heights = np.empty([128, 192])
     for i in range(128): #change to 128          
          for j in range(192):#change to 192
               top = np.where(np.abs(height-2300)<100)[0][0]
               RSS, J, K = fsft.get_fit(theta[:, i, j], height, top)
               print i, j, J
               ML_Heights[i, j] = height[J]
               #if height[J] < 500:
               #print i, j, J, height[J]#TODO:this could definitely be a function
               b_1 = (np.sum(np.multiply(height[:J], theta[:J, i, j])) - 1.0/J*np.sum(height[:J])*np.sum(theta[:J, i, j]))/(np.sum(height[:J]**2) - 1.0/J*np.sum(height[:J])**2)
               a_1 = np.sum(np.multiply(height[:J], theta[:J, i, j]))/np.sum(height[:J]) - b_1*np.sum(height[:J]**2)/np.sum(height[:J])                          
                                   
               b_2 = (np.sum(theta[J:K, i, j]) - (K-J)*(a_1+b_1*height[J]))/(np.sum(height[J:K]) - (K-J)*height[J])                                    
               a_2 = np.sum(np.multiply(height[J:K], theta[J:K, i, j]))/np.sum(height[J:K]) - b_2*np.sum(height[J:K]**2)/np.sum(height[J:K])
               b_3 = (np.sum(theta[K:290, i, j]) - (290-K)*(a_2+b_2*height[K]))/(np.sum(height[K:290]) - (290-K)*height[K])               
               if b_3-b_2>.002:     
                    #print i, j, J, height[J], height[K], b_3, b_2, b_3-b_2
                    ML_Heights[i, j] = height[K]
                    
     print '/tera/phil/nchaparr/python/Plotting/'+date+'/data/mixed_layer_height_'+ str(case) + '_' + dump_time_list[dump_time_index]           
     np.savetxt('/tera/phil/nchaparr/python/Plotting/'+date+'/data/mixed_layer_height_'+ str(case) + '_' + dump_time_list[dump_time_index], ML_Heights, delimiter=' ')
     
     return ML_Heights
Пример #2
0
    # getting points of maximum theta gradient, getting rid of this soon
    # [dvardz, grad_peaks] = nc.Domain_Grad(theta, height)
    # tops_indices=np.where(np.abs(grad_peaks - 1400)<10)

    # choosing one horizontal point
    for i in range(1):
        # top_index = [tops_indices[0][i], tops_indices[1][i]]
        # [i, j] = top_index
        [i, j] = [50, 50]
        thetavals = theta[:, i, j]

        startTime = datetime.now()
        # print 'Start', startTime#1
        top = np.where(np.abs(height - 2300) < 100)[0][0]
        print top, height[top]
        RSS, J, K = fsft.get_fit(thetavals, height, top)
        # print J, height[J]
        # print 'RSS time', (datetime.now()-startTime)
        fitvals = np.zeros_like(thetavals[:top])
        b_1 = (
            np.sum(np.multiply(height[9:J], thetavals[9:J]))
            - 1.0 / (J - 9) * np.sum(height[9:J] * np.sum(thetavals[9:J]))
        ) / (np.sum(height[9:J] ** 2) - 1.0 / (J - 9) * np.sum(height[9:J]) ** 2)
        # print np.sum(np.multiply(height[9:J], thetavals[9:J])),  - 1.0/(J-9)*np.sum(height[9:J]*np.sum(thetavals[9:J])), np.sum(height[9:J]**2), - 1.0/(J-9)*np.sum(height[9:J])**2

        a_1 = np.sum(np.multiply(height[9:J], thetavals[9:J])) / np.sum(height[9:J]) - b_1 * np.sum(
            height[9:J] ** 2
        ) / np.sum(height[9:J])

        b_2 = (np.sum(thetavals[J:K]) - (K - J) * (a_1 + b_1 * height[J])) / (np.sum(height[J:K]) - (K - J) * height[J])
        a_2 = np.sum(np.multiply(height[J:K], thetavals[J:K])) / np.sum(height[J:K]) - b_2 * np.sum(