Пример #1
0
def main():
    EXAMPLE_INDEX = 2
    kwargs_base = dict(level=4, max_phi=180)
    kwargs_s2 = dict(**kwargs_base)
    kwargs_opt_integrate = dict(num_nbr=12)
    query_max_phi = kwargs_base['max_phi'] - 5

    # Get an Example Mesh
    ga_cpp_s2 = GaussianAccumulatorS2(**kwargs_s2)

    example_mesh = o3d.io.read_triangle_mesh(str(ALL_MESHES[EXAMPLE_INDEX]))
    r = ALL_MESHES_ROTATIONS[EXAMPLE_INDEX]
    example_mesh_filtered = example_mesh
    if r is not None:
        example_mesh_filtered = example_mesh_filtered.rotate(r.as_matrix())
        example_mesh_filtered = example_mesh_filtered.filter_smooth_laplacian(
            5)

    example_mesh_filtered.compute_triangle_normals()
    np.save('fixtures/normals/basement.npy',
            np.asarray(example_mesh_filtered.triangle_normals))
    colored_icosahedron_s2, normals, neighbors_s2 = visualize_gaussian_integration(
        ga_cpp_s2,
        example_mesh_filtered,
        max_phi=query_max_phi,
        integrate_kwargs=kwargs_opt_integrate)

    o3d.visualization.draw_geometries([example_mesh_filtered])
    o3d.visualization.draw_geometries([colored_icosahedron_s2])

    # Visualize unwrapping
    ico_chart_ = IcoCharts(4)
    t2 = time.perf_counter()
    normalized_bucket_counts_by_vertex = ga_cpp_s2.get_normalized_bucket_counts_by_vertex(
        True)
    ico_chart_.fill_image(normalized_bucket_counts_by_vertex)

    find_peaks_kwargs = dict(threshold_abs=50,
                             min_distance=1,
                             exclude_border=False,
                             indices=False)
    print(np.asarray(ico_chart_.image).shape)
    cluster_kwargs = dict(t=0.1, criterion='distance')
    _, _, avg_peaks, _ = find_peaks_from_ico_charts(
        ico_chart_,
        np.asarray(normalized_bucket_counts_by_vertex),
        find_peaks_kwargs=find_peaks_kwargs,
        cluster_kwargs=cluster_kwargs)
    t3 = time.perf_counter()
    print(t3 - t2)
    print(avg_peaks)
    full_image = np.asarray(ico_chart_.image)

    plt.imshow(full_image)
    plt.axis('off')
    # plt.xticks(np.arange(0, full_image.shape[1], step=1))
    # plt.yticks(np.arange(0, full_image.shape[0], step=1))
    plt.show()
def get_image_peaks(ga_cpp_s2, level=2, **kwargs):
    ico_chart = IcoCharts(level)
    normalized_bucket_counts_by_vertex = ga_cpp_s2.get_normalized_bucket_counts_by_vertex(
        True)
    ico_chart.fill_image(normalized_bucket_counts_by_vertex)

    find_peaks_kwargs = dict(threshold_abs=25,
                             min_distance=1,
                             exclude_border=False,
                             indices=False)
    cluster_kwargs = dict(t=0.10, criterion='distance')
    average_filter = dict(min_total_weight=0.10)

    peaks, clusters, avg_peaks, avg_weights = find_peaks_from_ico_charts(
        ico_chart, np.asarray(normalized_bucket_counts_by_vertex),
        find_peaks_kwargs, cluster_kwargs, average_filter)
    gaussian_normals_sorted = np.asarray(ico_chart.sphere_mesh.vertices)
    pcd_all_peaks = get_pc_all_peaks(peaks, clusters, gaussian_normals_sorted)
    arrow_avg_peaks = get_arrow_normals(avg_peaks, avg_weights)

    return [pcd_all_peaks, *arrow_avg_peaks]
def example_normals(normals: np.ndarray):
    LEVEL = 2
    kwargs_base = dict(level=LEVEL, max_phi=180)
    kwargs_s2 = dict(**kwargs_base)

    # Create Gaussian Accumulator
    ga_cpp_s2 = GaussianAccumulatorS2(**kwargs_s2)
    # Integrate the normals and get open3d visualization
    colored_icosahedron = integrate_normals_and_visualize(normals, ga_cpp_s2)
    o3d.visualization.draw_geometries([colored_icosahedron])
    # Create the IcoChart for unwrapping
    ico_chart_ = IcoCharts(LEVEL)
    normalized_bucket_counts_by_vertex = ga_cpp_s2.get_normalized_bucket_counts_by_vertex(
        True)
    ico_chart_.fill_image(normalized_bucket_counts_by_vertex)

    triangles_vertex_14 = [2, 15, 7, 260, 267, 256]

    # 2D Peak Detection
    find_peaks_kwargs = dict(threshold_abs=20,
                             min_distance=1,
                             exclude_border=False,
                             indices=False)
    cluster_kwargs = dict(t=0.2, criterion='distance')
    average_filter = dict(min_total_weight=0.05)
    _, _, avg_peaks, _ = find_peaks_from_ico_charts(
        ico_chart_,
        np.asarray(normalized_bucket_counts_by_vertex),
        find_peaks_kwargs=find_peaks_kwargs,
        cluster_kwargs=cluster_kwargs)
    print("Detected Peaks: {}".format(avg_peaks))

    full_image = np.asarray(ico_chart_.image)
    plt.imshow(full_image)
    plt.xticks(np.arange(0, full_image.shape[1], step=1))
    plt.yticks(np.arange(0, full_image.shape[0], step=1))
    plt.show()

    # Don't forget to reset the GA
    ga_cpp_s2.clear_count()
Пример #4
0
def analyze_mesh(mesh):
    """Demonstrates unwrapping and peak detection of a S2 Histogram"""
    LEVEL = 4
    kwargs_base = dict(level=LEVEL, max_phi=180)
    kwargs_s2 = dict(**kwargs_base)
    kwargs_opt_integrate = dict(num_nbr=12)

    # Create Gaussian Accumulator
    ga_cpp_s2 = GaussianAccumulatorS2(**kwargs_s2)
    # This function will integrate the normals and return an open3d mesh for visualization.
    colored_icosahedron_s2, _, _ = visualize_gaussian_integration(
        ga_cpp_s2,
        mesh,
        max_phi=kwargs_base['max_phi'],
        integrate_kwargs=kwargs_opt_integrate)
    num_triangles = ga_cpp_s2.num_buckets

    # for verification
    ico_s2_organized_mesh = ga_cpp_s2.copy_ico_mesh(True)
    _, _, ico_o3d_s2_om = decompose(ico_s2_organized_mesh)
    colors_s2 = get_colors(range(num_triangles), colormap=plt.cm.tab20)[:, :3]
    colored_ico_s2_organized_mesh = assign_vertex_colors(
        ico_o3d_s2_om, colors_s2)

    # Demonstrate the five charts for visualization
    bucket_counts = np.asarray(ga_cpp_s2.get_normalized_bucket_counts(True))
    bucket_colors = get_colors(bucket_counts)[:, :3]
    charts_triangles = []
    for chart_idx in range(5):
        chart_size = int(num_triangles / 5)
        chart_start_idx = chart_idx * chart_size
        chart_end_idx = chart_start_idx + chart_size
        icochart_square = refine_icochart(level=LEVEL, square=True)
        _, _, icochart_square_o3d = decompose(icochart_square)
        colored_icochart_square = assign_vertex_colors(
            icochart_square_o3d,
            bucket_colors[chart_start_idx:chart_end_idx, :])
        charts_triangles.append(colored_icochart_square)

    # Plot the unwrapped icosahedron
    new_charts = translate_meshes(charts_triangles,
                                  current_translation=-4.0,
                                  axis=1)
    all_charts = functools.reduce(lambda a, b: a + b, new_charts)
    plot_meshes(colored_ico_s2_organized_mesh, colored_icosahedron_s2,
                all_charts, mesh)

    ico_chart_ = IcoCharts(LEVEL)
    normalized_bucket_counts_by_vertex = ga_cpp_s2.get_normalized_bucket_counts_by_vertex(
        True)
    ico_chart_.fill_image(normalized_bucket_counts_by_vertex)

    find_peaks_kwargs = dict(threshold_abs=25,
                             min_distance=1,
                             exclude_border=False,
                             indices=False)
    average_filter = dict(min_total_weight=0.05)
    _, _, avg_peaks, _ = find_peaks_from_ico_charts(
        ico_chart_,
        np.asarray(normalized_bucket_counts_by_vertex),
        find_peaks_kwargs=find_peaks_kwargs,
        average_filter=average_filter)
    print(avg_peaks)

    full_image = np.asarray(ico_chart_.image)

    plt.imshow(full_image)
    plt.xticks(np.arange(0, full_image.shape[1], step=1))
    plt.yticks(np.arange(0, full_image.shape[0], step=1))
    plt.show()