Пример #1
0
  def train(self, num_epochs):
    self.print_net_summary()
    util.log('Starting training...')

    start_epoch = self.curr_epoch

    while (self.curr_epoch - start_epoch <= num_epochs and 
          self.should_continue_training()):
      batch_start = time.time()
      train_data = self.train_dp.get_next_batch(self.batch_size)
      self.curr_epoch = train_data.epoch
      self.curr_batch += 1

      input, label = train_data.data, train_data.labels
      self.net.train_batch(input, label)
      cost , correct, numCase = self.net.get_batch_information()
      self.train_outputs += [({'logprob': [cost, 1 - correct]}, numCase, self.elapsed())]
      print >> sys.stderr, '%d.%d: error: %f logreg: %f time: %f' % (self.curr_epoch, self.curr_batch, 1 - correct, cost, time.time() - batch_start)

      if self.check_test_data():
        self.get_test_error()

      if self.factor != 1.0 and self.check_adjust_lr():
        self.adjust_lr()

      if self.check_save_checkpoint():
        self.save_checkpoint()

    #self.get_test_error()
    self.save_checkpoint()
    self.report()
    self._finished_training()
Пример #2
0
    def dump(self, checkpoint, suffix=0):
        if self.checkpoint_dir is None:
            return

        cp_pattern = os.path.join(self.checkpoint_dir, '*')
        cp_files = [(f, os.stat(f)) for f in glob.glob(cp_pattern)]
        cp_files = list(reversed(sorted(cp_files,
                                        key=lambda f: f[1].st_mtime)))

        while sum([f[1].st_size for f in cp_files]) > self.max_cp_size:
            os.remove(cp_files.pop()[0])

        checkpoint_filename = "%d" % suffix
        checkpoint_filename = os.path.join(self.checkpoint_dir,
                                           checkpoint_filename)

        util.log('Writing checkpoint to %s', checkpoint_filename)
        sf = shelve.open(checkpoint_filename,
                         flag='c',
                         protocol=-1,
                         writeback=False)
        for k, v in checkpoint.iteritems():
            sf[k] = v
        sf.sync()
        sf.close()

        util.log('save file finished')
Пример #3
0
 def __init__(self, name, poolSize=2, stride=2, start=0, disableBprop = False):
   Layer.__init__(self, name, 'pool', disableBprop)
   self.pool = 'avg'
   self.poolSize = poolSize
   self.stride = stride
   self.start = start
   util.log("pool_size:%s stride:%s start:%s", self.poolSize, self.stride, self.start)
Пример #4
0
    def __init__(self,
                 name,
                 n_out,
                 epsW=0.001,
                 epsB=0.002,
                 initW=0.01,
                 initB=0.0,
                 momW=0.0,
                 momB=0.0,
                 wc=0.0,
                 dropRate=0.0,
                 weight=None,
                 bias=None,
                 weightIncr=None,
                 biasIncr=None,
                 disableBprop=False):
        self.outputSize = n_out
        self.dropRate = dropRate

        WeightedLayer.__init__(self, name, 'fc', epsW, epsB, initW, initB,
                               momW, momB, wc, weight, bias, weightIncr,
                               biasIncr, disableBprop)
        util.log(
            'output_size:%s epsW:%s epsB:%s initW:%s initB:%s momW:%s momB:%s wc:%s dropRate:%s',
            self.outputSize, self.epsW, self.epsB, self.initW, self.initB,
            self.momW, self.momB, self.wc, self.dropRate)
Пример #5
0
    def get_checkpoint(self):
        if self.checkpoint_dir is None:
            return None

        if self.test_id == '':
            cp_pattern = self.checkpoint_dir
        else:
            cp_pattern = os.path.join(self.checkpoint_dir, "*")
        cp_files = glob.glob(cp_pattern)

        if not cp_files:
            util.log_info('Not checkpoint files found in %s' % cp_pattern)
            return None

        checkpoint_file = sorted(cp_files, key=os.path.getmtime)[-1]
        util.log('Loading from checkpoint file: %s', checkpoint_file)

        try:
            #return shelve.open(checkpoint_file, flag='r', protocol=-1, writeback=False)
            return shelve.open(checkpoint_file,
                               flag='r',
                               protocol=-1,
                               writeback=False)
        except:
            dict = {}
            with zipfile.ZipFile(checkpoint_file) as zf:
                for k in zf.namelist():
                    dict[k] = cPickle.loads(zf.read(k))
            return dict
Пример #6
0
  def get_checkpoint(self):
    if self.checkpoint_dir is None:
      return None

    if self.test_id == '':
      cp_pattern = self.checkpoint_dir
    else:
      cp_pattern = os.path.join(self.checkpoint_dir, "*")
    cp_files = glob.glob(cp_pattern)

    if not cp_files:
      util.log_info('Not checkpoint files found in %s' % cp_pattern)
      return None

    checkpoint_file = sorted(cp_files, key=os.path.getmtime)[-1]
    util.log('Loading from checkpoint file: %s', checkpoint_file)

    try:
      #return shelve.open(checkpoint_file, flag='r', protocol=-1, writeback=False)
      return shelve.open(checkpoint_file, flag='r', protocol=-1,
                         writeback=False)
    except:
      dict = {}
      with zipfile.ZipFile(checkpoint_file) as zf:
        for k in zf.namelist():
          dict[k] = cPickle.loads(zf.read(k))
      return dict
Пример #7
0
 def __init__(self, name, pow=0.75, size=9, scale=0.001, disableBprop = False):
   Layer.__init__(self, name, 'rnorm', disableBprop)
   self.pow = pow
   self.size = size
   self.scale = scale
   self.scaler = self.scale / self.size ** 2
   self.denom = None
   util.log("pow:%s size:%s scale:%s scaler:%s", self.pow, self.size, self.scale, self.scaler)
Пример #8
0
  def __init__(self, name, pow=0.75, size=9, scale=0.001, blocked=False, disableBprop =
      False):
    ResponseNormLayer.__init__(self, name, pow, size, scale, disableBprop)
    self.type = 'cmrnorm'
    self.scaler = self.scale / self.size
    self.blocked = blocked

    util.log("pow:%s size:%s, scale:%s scaler:%s", self.pow, self.size, self.scale, self.scaler)
Пример #9
0
 def attach(self, prev):
     input_shape = prev.get_output_shape()
     self.inputSize = int(np.prod(input_shape[0:3]))
     self.batchSize = input_shape[3]
     self.weightShape = (self.outputSize, self.inputSize)
     self.biasShape = (self.outputSize, 1)
     util.log('%s %s %s', input_shape, self.weightShape, self.biasShape)
     self._init_weights(self.weightShape, self.biasShape)
Пример #10
0
 def attach(self, prev):
   input_shape = prev.get_output_shape()
   self.inputSize = int(np.prod(input_shape[0:3]))
   self.batchSize = input_shape[3]
   self.weightShape = (self.outputSize, self.inputSize)
   self.biasShape = (self.outputSize, 1)
   util.log('%s %s %s', input_shape, self.weightShape, self.biasShape)
   self._init_weights(self.weightShape, self.biasShape)
Пример #11
0
  def train(self, num_epochs):
    self.print_net_summary()
    util.log('Starting training...')

    start_epoch = self.curr_epoch

    clear_w = gpuarray.to_gpu(np.eye(self.net.layers[-2].weight.shape[0], dtype = np.float32))

    while (self.curr_epoch - start_epoch <= num_epochs and 
          self.should_continue_training()):
      batch_start = time.time()
      train_data = self.train_dp.get_next_batch(self.batch_size)
      self.curr_epoch = train_data.epoch
      self.curr_batch += 1

      input, label = train_data.data, train_data.labels

      if self.train_dp.is_curr_batch_noisy == False:
        assert(self.net.layers[-2].name == 'noise')
        noisy_eps = self.net.layers[-2].epsW
        self.net.layers[-2].epsW = 0
        noisy_w = self.net.layers[-2].weight
        self.net.layers[-2].weight = clear_w
      else:
        if hasattr(self, 'noisy_factor'):
          self.net.adjust_learning_rate(self.noisy_factor)

      self.net.train_batch(input, label)

      if self.train_dp.is_curr_batch_noisy == False:
        self.net.layers[-2].epsW = noisy_eps
        self.net.layers[-2].weight = noisy_w
      else:
        if hasattr(self, 'noisy_factor'):
          self.net.adjust_learning_rate(1./self.noisy_factor)

      cost , correct, numCase = self.net.get_batch_information()
      self.train_outputs += [({'logprob': [cost, 1 - correct]}, numCase, self.elapsed())]
      print >> sys.stderr, '%d.%d: error: %f logreg: %f time: %f' % (self.curr_epoch, self.curr_batch, 1 - correct, cost, time.time() - batch_start)

      if self.check_test_data():
        noisy_w = self.net.layers[-2].weight
        self.net.layers[-2].weight = clear_w
        self.get_test_error()
        self.net.layers[-2].weight = noisy_w

      if self.factor != 1.0 and self.check_adjust_lr():
        self.adjust_lr()

      if self.check_save_checkpoint():
        self.save_checkpoint()

    #self.get_test_error()
    self.save_checkpoint()
    self.report()
    self._finished_training()
    def save_checkpoint(self):
        weight = self.net.get_weight_by_name(self.first_layer_name)
        self.base_weight = self._get_layer_weight(self.first_layer_name)
        weight_diff = weight - self.base_weight
        diff = np.sum(np.abs(weight_diff))
        self.diff_list.append(diff)
        util.log('%f', diff)
        self._log()

        trainer.Trainer.save_checkpoint(self)
  def save_checkpoint(self):
    weight = self.net.get_weight_by_name(self.first_layer_name)
    self.base_weight = self._get_layer_weight(self.first_layer_name)
    weight_diff = weight - self.base_weight
    diff = np.sum(np.abs(weight_diff))
    self.diff_list.append(diff)
    util.log('%f', diff)
    self._log()

    trainer.Trainer.save_checkpoint(self)
Пример #14
0
  def get_next_batch(self):
    self.get_next_index()

    filename = os.path.join(self.data_dir + '.%s' % self.curr_batch)
    util.log('reading from %s', filename)

    data_dic = util.load(filename)
    data  = data_dic[self.data_name].transpose()
    labels = data_dic['labels']
    data = np.require(data, requirements='C', dtype=np.float32)
    return BatchData(data, labels, self.curr_epoch)
Пример #15
0
 def _finished_training(self):
   dumper = getattr(self, 'train_layer_output_dumper', None)
   if dumper != None:
     cache_outputs(self.net, self.train_dp, dumper, index = -3)
   else:
     util.log('There is no dumper for train data')
   dumper = getattr(self, 'test_layer_output_dumper', None)
   if dumper != None:
     cache_outputs(self.net, self.test_dp, dumper, index = -3)
   else:
     util.log('There is no dumper for test data')
Пример #16
0
  def get_next_batch(self):
    self.get_next_index()

    filename = os.path.join(self.data_dir + '.%s' % self.curr_batch)
    util.log('reading from %s', filename)

    data_dic = util.load(filename)
    data  = data_dic[self.data_name].transpose()
    labels = data_dic['labels']
    data = np.require(data, requirements='C', dtype=np.float32)
    return BatchData(data, labels, self.curr_epoch)
Пример #17
0
  def __init__(self, name, n_out, epsW=0.001, epsB=0.002, initW=0.01, initB=0.0,
      momW=0.0, momB=0.0, wc=0.0, dropRate=0.0, weight=None, bias=None, weightIncr = None, biasIncr
      = None, disableBprop = False):
    self.outputSize = n_out
    self.dropRate = dropRate

    WeightedLayer.__init__(self, name, 'fc', epsW, epsB, initW, initB, momW, momB, wc, weight,
        bias, weightIncr, biasIncr, disableBprop)
    util.log('output_size:%s epsW:%s epsB:%s initW:%s initB:%s momW:%s momB:%s wc:%s dropRate:%s',
        self.outputSize, self.epsW, self.epsB, self.initW, self.initB, self.momW, self.momB,
        self.wc, self.dropRate)
Пример #18
0
 def _finished_training(self):
   dumper = getattr(self, 'train_layer_output_dumper', None)
   if dumper != None:
     cache_outputs(self.net, self.train_dp, dumper, index = -3)
   else:
     util.log('There is no dumper for train data')
   dumper = getattr(self, 'test_layer_output_dumper', None)
   if dumper != None:
     cache_outputs(self.net, self.test_dp, dumper, index = -3)
   else:
     util.log('There is no dumper for test data')
Пример #19
0
    def predict(self, save_layers=None, filename=None):
        self.net.save_layerouput(save_layers)
        self.print_net_summary()
        util.log('Starting predict...')
        save_output = []

        total_cost = 0
        total_correct = 0
        total_numcase = 0

        if self.net.layers[-2].name == 'noise':
            w = np.eye(self.net.layers[-2].weight.shape[0], dtype=np.float32)
            if self.net.layers[-2].weight.shape[0] == 11:
                w[:, 10] = 0.1
                w[10, 10] = 0
            clear_w = gpuarray.to_gpu(w)
            noisy_w = self.net.layers[-2].weight
            self.net.layers[-2].weight = clear_w

        while self.curr_epoch < 2:
            start = time.time()
            test_data = self.test_dp.get_next_batch(self.batch_size)

            input, label = test_data.data, test_data.labels
            self.net.train_batch(input, label, TEST)
            cost, correct, numCase = self.net.get_batch_information()
            self.curr_epoch = test_data.epoch
            self.curr_batch += 1
            print >> sys.stderr, '%d.%d: error: %f logreg: %f time: %f' % (
                self.curr_epoch, self.curr_batch, 1 - correct, cost,
                time.time() - start)
            if save_layers is not None:
                save_output.extend(self.net.get_save_output())

            total_cost += cost * numCase
            total_correct += correct * numCase
            total_numcase += numCase

        if self.net.layers[-2].name == 'noise':
            self.net.layers[-2].weight = noisy_w

        if save_layers is not None:
            if filename is not None:
                with open(filename, 'w') as f:
                    cPickle.dump(save_output, f, protocol=-1)
                util.log('save layer output finished')

        total_cost /= total_numcase
        total_correct /= total_numcase
        print >> sys.stderr, '---- test ----'
        print >> sys.stderr, 'error: %f logreg: %f' % (1 - total_correct,
                                                       total_cost)
Пример #20
0
 def __init__(self,
              name,
              poolSize=2,
              stride=2,
              start=0,
              disableBprop=False):
     Layer.__init__(self, name, 'pool', disableBprop)
     self.pool = 'avg'
     self.poolSize = poolSize
     self.stride = stride
     self.start = start
     util.log("pool_size:%s stride:%s start:%s", self.poolSize, self.stride,
              self.start)
Пример #21
0
 def __init__(self,
              name,
              pow=0.75,
              size=9,
              scale=0.001,
              disableBprop=False):
     Layer.__init__(self, name, 'rnorm', disableBprop)
     self.pow = pow
     self.size = size
     self.scale = scale
     self.scaler = self.scale / self.size**2
     self.denom = None
     util.log("pow:%s size:%s scale:%s scaler:%s", self.pow, self.size,
              self.scale, self.scaler)
Пример #22
0
  def dump(self, checkpoint, suffix):
    saved_filename = [f for f in os.listdir(self.checkpoint_dir) if self.regex.match(f)]
    for f in saved_filename:
      os.remove(os.path.join(self.checkpoint_dir, f))
    checkpoint_filename = "%s-%d" % (self.test_id, suffix)
    self.checkpoint_file = os.path.join(self.checkpoint_dir, checkpoint_filename)
    print >> sys.stderr, self.checkpoint_file

    with zipfile.ZipFile(self.checkpoint_file, mode='w') as output:
      for k, v in checkpoint.iteritems():
        output.writestr(k, cPickle.dumps(v, protocol=-1)) 


    util.log('save file finished')
Пример #23
0
    def __init__(self,
                 name,
                 pow=0.75,
                 size=9,
                 scale=0.001,
                 blocked=False,
                 disableBprop=False):
        ResponseNormLayer.__init__(self, name, pow, size, scale, disableBprop)
        self.type = 'cmrnorm'
        self.scaler = self.scale / self.size
        self.blocked = blocked

        util.log("pow:%s size:%s, scale:%s scaler:%s", self.pow, self.size,
                 self.scale, self.scaler)
Пример #24
0
  def predict(self, save_layers=None, filename=None):
    self.net.save_layerouput(save_layers)
    self.print_net_summary()
    util.log('Starting predict...')
    save_output = []

    total_cost = 0
    total_correct = 0
    total_numcase = 0

    if self.net.layers[-2].name == 'noise':
      w = np.eye(self.net.layers[-2].weight.shape[0], dtype = np.float32)
      if self.net.layers[-2].weight.shape[0] == 11:
        w[:,10] = 0.1
        w[10,10] = 0
      clear_w = gpuarray.to_gpu(w)
      noisy_w = self.net.layers[-2].weight
      self.net.layers[-2].weight = clear_w

    while self.curr_epoch < 2:
      start = time.time()
      test_data = self.test_dp.get_next_batch(self.batch_size)

      input, label = test_data.data, test_data.labels
      self.net.train_batch(input, label, TEST)
      cost , correct, numCase = self.net.get_batch_information()
      self.curr_epoch = test_data.epoch
      self.curr_batch += 1
      print >> sys.stderr, '%d.%d: error: %f logreg: %f time: %f' % (self.curr_epoch, self.curr_batch, 1 - correct, cost, time.time() - start)
      if save_layers is not None:
        save_output.extend(self.net.get_save_output())

      total_cost += cost * numCase
      total_correct += correct * numCase
      total_numcase += numCase

    if self.net.layers[-2].name == 'noise':
      self.net.layers[-2].weight = noisy_w

    if save_layers is not None:
      if filename is not None:
        with open(filename, 'w') as f:
          cPickle.dump(save_output, f, protocol=-1)
        util.log('save layer output finished')

    total_cost /= total_numcase
    total_correct /= total_numcase
    print >> sys.stderr, '---- test ----'
    print >> sys.stderr, 'error: %f logreg: %f' % (1 - total_correct, total_cost)
Пример #25
0
  def __init__(self, name, num_filters, filter_shape, padding = 2, stride = 1, initW = None, initB =
      None,  epsW = 0.001, epsB=0.002, momW=0.9, momB=0.9, wc = 0.004, bias = None, weight
      = None, weightIncr = None, biasIncr = None, disable_bprop = False):

    self.numFilter = num_filters
    assert filter_shape[0] == filter_shape[1], 'Non-square filters not yet supported.'
    self.filterSize = filter_shape[0]
    self.padding = padding
    self.stride = stride

    WeightedLayer.__init__(self, name, 'local', 
                           epsW, epsB, initW, initB, momW, momB, wc, weight,
                           bias, weightIncr, biasIncr, disable_bprop)
    util.log('numFilter:%s padding:%s stride:%s initW:%s initB:%s, w: %s, b: %s',
             self.numFilter, self.padding, self.stride, self.initW, self.initB, 
             self.weight, self.bias)
Пример #26
0
  def __init__(self, name, num_filters, filter_shape, padding = 2, stride = 1, initW = None, initB =
      None,  epsW = 0.001, epsB=0.002, momW=0.9, momB=0.9, wc = 0.004, bias = None, weight
      = None, weightIncr = None, biasIncr = None, disable_bprop = False):

    self.numFilter = num_filters
    assert filter_shape[0] == filter_shape[1], 'Non-square filters not yet supported.'
    self.filterSize = filter_shape[0]
    self.padding = padding
    self.stride = stride

    WeightedLayer.__init__(self, name, 'local', 
                           epsW, epsB, initW, initB, momW, momB, wc, weight,
                           bias, weightIncr, biasIncr, disable_bprop)
    util.log('numFilter:%s padding:%s stride:%s initW:%s initB:%s, w: %s, b: %s',
             self.numFilter, self.padding, self.stride, self.initW, self.initB, 
             self.weight, self.bias)
Пример #27
0
    def dump(self, checkpoint, suffix):
        saved_filename = [
            f for f in os.listdir(self.checkpoint_dir) if self.regex.match(f)
        ]
        for f in saved_filename:
            os.remove(os.path.join(self.checkpoint_dir, f))
        checkpoint_filename = "%s-%d" % (self.test_id, suffix)
        self.checkpoint_file = os.path.join(self.checkpoint_dir,
                                            checkpoint_filename)
        print >> sys.stderr, self.checkpoint_file

        with zipfile.ZipFile(self.checkpoint_file, mode='w') as output:
            for k, v in checkpoint.iteritems():
                output.writestr(k, cPickle.dumps(v, protocol=-1))

        util.log('save file finished')
Пример #28
0
    def get_checkpoint(self):
        cp_pattern = self.checkpoint_dir + '/%s-*' % self.test_id
        cp_files = glob.glob(cp_pattern)
        if not cp_files:
            return None

        checkpoint_file = sorted(cp_files, key=os.path.getmtime)[-1]
        util.log('Loading from checkpoint file: %s', checkpoint_file)
        dict = {}

        with zipfile.ZipFile(checkpoint_file, mode='r') as zip_in:
            for fname in zip_in.namelist():
                with zip_in.open(fname, mode='r') as entry_f:
                    dict[fname] = cPickle.load(entry_f)

        return dict
Пример #29
0
  def get_checkpoint(self):
    cp_pattern = self.checkpoint_dir + '/%s-*' % self.test_id
    cp_files = glob.glob(cp_pattern)
    if not cp_files:
      return None
    
    checkpoint_file = sorted(cp_files, key=os.path.getmtime)[-1]
    util.log('Loading from checkpoint file: %s', checkpoint_file)
    dict = {}

    with zipfile.ZipFile(checkpoint_file, mode='r') as zip_in:
      for fname in zip_in.namelist():
        with zip_in.open(fname, mode='r') as entry_f: 
          dict[fname] = cPickle.load(entry_f)

    return dict
Пример #30
0
  def drop_layer_from(self, name):
    found = False
    for i, layer in enumerate(self.layers):
      if layer.name == name:
        found = True
        break

    if not found:
      util.log('Layer: %s not found.', name)
      return []

    return_layers = self.layers[i:]
    self.layers = self.layers[0:i]
    print 'delete layer from', name
    print 'the last layer would be', self.layers[-1].name
    return return_layers
Пример #31
0
    def flush(self):
        if self.sz == 0:
            return

        out = {}
        for k in self.data[0].keys():
            items = [d[k] for d in self.data]
            out[k] = np.concatenate(items, axis=0)

        filename = '%s.%d' % (self.target_path, self.count)
        with open(filename, 'w') as f:
            cPickle.dump(out, f, -1)

        util.log('Wrote layer dump to %s', filename)
        self.data = []
        self.sz = 0
        self.count += 1
Пример #32
0
  def flush(self):
    if self.sz == 0:
      return

    out = {}
    for k in self.data[0].keys():
      items = [d[k] for d in self.data]
      out[k] = np.concatenate(items, axis=0)

    filename = '%s.%d' % (self.target_path, self.count)
    with open(filename, 'w') as f:
      cPickle.dump(out, f, -1)

    util.log('Wrote layer dump to %s', filename)
    self.data = []
    self.sz = 0
    self.count += 1
Пример #33
0
  def __init__(self, name, num_filters, filter_shape, padding=2, stride=1, initW=0.01, initB=
      0.0, partialSum = 0, sharedBiases = 0, epsW=0.001, epsB=0.002, momW=0.0, momB=0.0, wc=0.0,
      bias=None, weight=None, weightIncr = None, biasIncr = None, disableBprop = False):

    self.numFilter = num_filters
    
    assert filter_shape[0] == filter_shape[1], 'Non-square filters not yet supported.'
    self.filterSize = filter_shape[0]
    self.padding = padding
    self.stride = stride

    self.partialSum = partialSum
    self.sharedBiases = sharedBiases

    WeightedLayer.__init__(self, name, 'conv', epsW, epsB, initW, initB, momW, momB, wc, weight,
        bias, weightIncr, biasIncr, disableBprop)
    util.log('num_filter:%d padding:%d stride:%d initW:%s initB:%s, epsW:%s epsB:%s, momW:%s momB:%s wc:%s',
    self.numFilter, self.padding, self.stride, self.initW, self.initB, self.epsW,
    self.epsB, self.momW, self.momB, self.wc)
Пример #34
0
  def __init__(self, target_path, max_mem_size=500e5):
    self.target_path = target_path
    dirname = os.path.dirname(self.target_path)
    if not os.path.exists(dirname):
      os.makedirs(dirname)
      util.log('%s is not exist, create a new directory', dirname)
    self.data = []
    self.sz = 0
    self.count = 0
    self.max_mem_size = max_mem_size

    util.log('dumper establised')
    util.log('target path:    %s', self.target_path)
    util.log('max_memory:     %s', self.max_mem_size)
Пример #35
0
    def __init__(self, target_path, max_mem_size=500e5):
        self.target_path = target_path
        dirname = os.path.dirname(self.target_path)
        if not os.path.exists(dirname):
            os.makedirs(dirname)
            util.log('%s is not exist, create a new directory', dirname)
        self.data = []
        self.sz = 0
        self.count = 0
        self.max_mem_size = max_mem_size

        util.log('dumper establised')
        util.log('target path:    %s', self.target_path)
        util.log('max_memory:     %s', self.max_mem_size)
Пример #36
0
  def __init__(self, data_dir,
               batch_range=None,
               multiview = False,
               category_range=None,
               scale=1,
               batch_size=1024):
    DataProvider.__init__(self, data_dir, batch_range)
    self.multiview = multiview
    self.batch_size = batch_size

    self.scale = scale

    self.img_size = ImageNetDataProvider.img_size / scale
    self.border_size = ImageNetDataProvider.border_size / scale
    self.inner_size = self.img_size - self.border_size * 2

    if self.multiview:
      self.batch_size = 12

    self.images = _prepare_images(data_dir, category_range, batch_range, self.batch_meta)
    self.num_view = 5 * 2 if self.multiview else 1

    assert len(self.images) > 0

    self._shuffle_batches()

    if 'data_mean' in self.batch_meta:
      data_mean = self.batch_meta['data_mean']
    else:
      data_mean = util.load(data_dir + 'image-mean.pickle')['data']

    self.data_mean = (data_mean
        .astype(np.single)
        .T
        .reshape((3, 256, 256))[:,
                                self.border_size:self.border_size + self.inner_size,
                                self.border_size:self.border_size + self.inner_size]
        .reshape((self.data_dim, 1)))
    util.log('Starting data provider with %d batches', len(self.batches))
Пример #37
0
    def __init__(self,
                 name,
                 num_filters,
                 filter_shape,
                 padding=2,
                 stride=1,
                 initW=0.01,
                 initB=0.0,
                 partialSum=0,
                 sharedBiases=0,
                 epsW=0.001,
                 epsB=0.002,
                 momW=0.0,
                 momB=0.0,
                 wc=0.0,
                 bias=None,
                 weight=None,
                 weightIncr=None,
                 biasIncr=None,
                 disableBprop=False):

        self.numFilter = num_filters

        assert filter_shape[0] == filter_shape[
            1], 'Non-square filters not yet supported.'
        self.filterSize = filter_shape[0]
        self.padding = padding
        self.stride = stride

        self.partialSum = partialSum
        self.sharedBiases = sharedBiases

        WeightedLayer.__init__(self, name, 'conv', epsW, epsB, initW, initB,
                               momW, momB, wc, weight, bias, weightIncr,
                               biasIncr, disableBprop)
        util.log(
            'num_filter:%d padding:%d stride:%d initW:%s initB:%s, epsW:%s epsB:%s, momW:%s momB:%s wc:%s',
            self.numFilter, self.padding, self.stride, self.initW, self.initB,
            self.epsW, self.epsB, self.momW, self.momB, self.wc)
Пример #38
0
    def __init__(self,
                 data_dir,
                 batch_range=None,
                 multiview=False,
                 category_range=None,
                 scale=1,
                 batch_size=1024):
        DataProvider.__init__(self, data_dir, batch_range)
        self.multiview = multiview
        self.batch_size = batch_size

        self.scale = scale

        self.img_size = ImageNetDataProvider.img_size / scale
        self.border_size = ImageNetDataProvider.border_size / scale
        self.inner_size = self.img_size - self.border_size * 2

        if self.multiview:
            self.batch_size = 12

        self.images = _prepare_images(data_dir, category_range, batch_range,
                                      self.batch_meta)
        self.num_view = 5 * 2 if self.multiview else 1

        assert len(self.images) > 0

        self._shuffle_batches()

        if 'data_mean' in self.batch_meta:
            data_mean = self.batch_meta['data_mean']
        else:
            data_mean = util.load(data_dir + 'image-mean.pickle')['data']

        self.data_mean = (data_mean.astype(np.single).T.reshape(
            (3, 256, 256))[:,
                           self.border_size:self.border_size + self.inner_size,
                           self.border_size:self.border_size +
                           self.inner_size].reshape((self.data_dim, 1)))
        util.log('Starting data provider with %d batches', len(self.batches))
Пример #39
0
  def cut_off_chunk(self):
    if len(self.memory_chunk) == 0:
      util.log('There is no chunk to cut off')
      return

    size = 0
    for k, v, in self.memory_chunk[0].iteritems():
      size += self.memory_chunk[0][k].nbytes

    del self.memory_chunk[0]
    self.total_data_size -= size
    self.count -= 1
    util.log('drop off the first memory chunk')
    util.log('droped chunk size:    %s', size)
    util.log('total data size:      %s', self.total_data_size)
Пример #40
0
  def run(self):
    while not self._stop:
      util.log('Fetching...')
      self.queue.put(self.dp.get_next_batch())
      util.log('%s', self.dp.curr_batch_index)
      util.log('Done.')

    self._running = False
Пример #41
0
    def cut_off_chunk(self):
        if len(self.memory_chunk) == 0:
            util.log('There is no chunk to cut off')
            return

        size = 0
        for k, v, in self.memory_chunk[0].iteritems():
            size += self.memory_chunk[0][k].nbytes

        del self.memory_chunk[0]
        self.total_data_size -= size
        self.count -= 1
        util.log('drop off the first memory chunk')
        util.log('droped chunk size:    %s', size)
        util.log('total data size:      %s', self.total_data_size)
Пример #42
0
  def run(self):
    while not self._stop:
      util.log('Fetching...')
      self.queue.put(self.dp.get_next_batch())
      util.log('%s', self.dp.curr_batch_index)
      util.log('Done.')

    self._running = False
Пример #43
0
 def print_learning_rates(self):
   util.log('Learning rates:')
   for layer in self.layers:
     if isinstance(layer, WeightedLayer):
       util.log('%s: %s %s %s', layer.name, layer.__class__.__name__, 
                layer.weight.epsilon, layer.bias.epsilon)
     else:
       util.log('%s: %s', layer.name, layer.__class__.__name__)
Пример #44
0
  def dump(self, checkpoint, suffix=0):
    if self.checkpoint_dir is None:
      return
    
    cp_pattern = os.path.join(self.checkpoint_dir, '*')
    cp_files = [(f, os.stat(f)) for f in glob.glob(cp_pattern)]
    cp_files = list(reversed(sorted(cp_files, key=lambda f: f[1].st_mtime)))

    #while sum([f[1].st_size for f in cp_files]) > self.max_cp_size:
    #  os.remove(cp_files.pop())

    checkpoint_filename = "%d" % suffix
    checkpoint_filename = os.path.join(self.checkpoint_dir, checkpoint_filename)

    util.log('Writing checkpoint to %s', checkpoint_filename)
    if checkpoint_filename.startswith('/hdfs'):
      print 'Writing to hdfs '
      suf = ''
      for i in range(6):
        suf += random.choice(string.ascii_letters)
      tempfilename = '/tmp/' + suf
      print 'temp filename is', tempfilename
      sf = shelve.open(tempfilename, flag = 'c', protocol=-1, writeback=False)
      #sf = shelve.open(checkpoint_filename, flag='c', protocol=-1, writeback=False)
      for k, v in checkpoint.iteritems():
        sf[k] = v
      sf.sync()
      sf.close()
      #shutil.copy2(tempfilename, checkpoint_filename)
      os.system('mv %s %s' %( tempfilename, checkpoint_filename))
    else:
      sf = shelve.open(checkpoint_filename, flag='c', protocol=-1, writeback=False)
      for k, v in checkpoint.iteritems():
        sf[k] = v
      sf.sync()
      sf.close()

    util.log('save file finished')
Пример #45
0
  def dump(self, checkpoint, suffix=0):
    if self.checkpoint_dir is None:
      return

    cp_pattern = os.path.join(self.checkpoint_dir, '*')
    cp_files = [(f, os.stat(f)) for f in glob.glob(cp_pattern)]
    cp_files = list(reversed(sorted(cp_files, key=lambda f: f[1].st_mtime)))

    while sum([f[1].st_size for f in cp_files]) > self.max_cp_size:
      os.remove(cp_files.pop()[0])

    checkpoint_filename = "%d" % suffix
    checkpoint_filename = os.path.join(self.checkpoint_dir, checkpoint_filename)

    util.log('Writing checkpoint to %s', checkpoint_filename)
    sf = shelve.open(checkpoint_filename, flag='c', protocol=-1,
                     writeback=False)
    for k, v in checkpoint.iteritems():
      sf[k] = v
    sf.sync()
    sf.close()

    util.log('save file finished')
Пример #46
0
    def __init__(self, data_dir='.', batch_range=None):
        self.data_dir = data_dir
        self.meta_file = os.path.join(data_dir, 'batches.meta')

        self.curr_batch_index = 0
        self.curr_batch = None
        self.curr_epoch = 1

        if os.path.exists(self.meta_file):
            self.batch_meta = util.load(self.meta_file)
        else:
            util.log_warn('Missing metadata for loader.')

        if batch_range is None:
            self.batch_range = self.get_batch_indexes()
        else:
            self.batch_range = batch_range

        util.log('Batch range: %s', self.batch_range)
        random.shuffle(self.batch_range)

        self.index = 0
        self._handle_new_epoch()
Пример #47
0
  def __init__(self, data_dir='.', batch_range=None):
    self.data_dir = data_dir
    self.meta_file = os.path.join(data_dir, 'batches.meta')

    self.curr_batch_index = 0
    self.curr_batch = None
    self.curr_epoch = 1

    if os.path.exists(self.meta_file):
      self.batch_meta = util.load(self.meta_file)
    else:
      util.log_warn('Missing metadata for loader.')

    if batch_range is None:
      self.batch_range = self.get_batch_indexes()
    else:
      self.batch_range = batch_range

    util.log('Batch range: %s', self.batch_range)
    random.shuffle(self.batch_range)

    self.index = 0
    self._handle_new_epoch()
Пример #48
0
  def train(self, num_epochs=1000):
    self.print_net_summary()
    util.log('Starting training...')

    start_epoch = self.curr_epoch
    last_print_time = time.time()

    while (self.curr_epoch - start_epoch < num_epochs and 
          self.should_continue_training()):
      batch_start = time.time()
      train_data = self.train_dp.get_next_batch(self.batch_size)
      self.curr_epoch = train_data.epoch
      self.curr_batch += 1

      input, label = train_data.data, train_data.labels
      self.net.train_batch(input, label)
      cost, correct, numCase = self.net.get_batch_information()
      self.train_outputs += [({'logprob': [cost, 1 - correct]}, numCase, self.elapsed())]

      if time.time() - last_print_time > 1:
        print >> sys.stderr, '%d.%d: error: %f logreg: %f time: %f' % (
                      self.curr_epoch, self.curr_batch, 1 - correct, cost, time.time() - batch_start)
        last_print_time = time.time()

      if self.check_test_data():
        self.get_test_error()

      if self.factor != 1.0 and self.check_adjust_lr():
        self.adjust_lr()

      if self.check_save_checkpoint():
        self.save_checkpoint()

    self.get_test_error()
    self.save_checkpoint()
    self.report()
    self._finished_training()
Пример #49
0
  def predict(self, save_layers=None, filename=None):
    self.net.save_layerouput(save_layers)
    self.print_net_summary()
    util.log('Starting predict...')
    save_output = []

    total_cost = 0
    total_correct = 0
    total_numcase = 0
    while self.curr_epoch < 2:
      start = time.time()
      test_data = self.test_dp.get_next_batch(self.batch_size)

      input, label = test_data.data, test_data.labels
      self.net.train_batch(input, label, TEST)
      cost , correct, numCase = self.net.get_batch_information()
      self.curr_epoch = test_data.epoch
      self.curr_batch += 1
      print >> sys.stderr, '%d.%d: error: %f logreg: %f time: %f' % (self.curr_epoch, self.curr_batch, 1 - correct, cost, time.time() - start)
      if save_layers is not None:
        save_output.extend(self.net.get_save_output())

      total_cost += cost * numCase
      total_correct += correct * numCase
      total_numcase += numCase

    if save_layers is not None:
      if filename is not None:
        with open(filename, 'w') as f:
          cPickle.dump(save_output, f, protocol=-1)
        util.log('save layer output finished')

    total_cost /= total_numcase
    total_correct /= total_numcase
    print >> sys.stderr, '---- test ----'
    print >> sys.stderr, 'error: %f logreg: %f' % (1 - total_correct, total_cost)
Пример #50
0
    def __init__(self, single_memory_size=50e6, total_memory_size=4e9):
        self.single_memory_size = single_memory_size
        self.total_memory_size = total_memory_size
        self.single_data_size = 0
        self.total_data_size = 0
        self.count = 0
        self.data = []
        self.memory_chunk = []

        util.log('memory data holder establised')
        util.log('total memory size:    %s', self.total_memory_size)
        util.log('single memory size:   %s', self.single_memory_size)
Пример #51
0
  def __init__(self, single_memory_size=50e6, total_memory_size=4e9):
    self.single_memory_size = single_memory_size
    self.total_memory_size = total_memory_size
    self.single_data_size = 0
    self.total_data_size = 0
    self.count = 0
    self.data = []
    self.memory_chunk = []

    util.log('memory data holder establised')
    util.log('total memory size:    %s', self.total_memory_size)
    util.log('single memory size:   %s', self.single_memory_size)
Пример #52
0
    def flush(self):
        if self.single_data_size == 0:
            return

        dic = {}
        for k in self.data[0].keys():
            items = [d[k] for d in self.data]
            dic[k] = np.concatenate(items, axis=0)

        self.memory_chunk.append(dic)

        util.log('add another memory chunk')
        util.log('memory chunk size:    %s', self.single_data_size)
        util.log('total data size:    %s', self.total_data_size)

        self.data = []
        self.single_data_size = 0
        self.count += 1
Пример #53
0
  def flush(self):
    if self.single_data_size == 0:
      return

    dic = {}
    for k in self.data[0].keys():
      items = [d[k] for d in self.data]
      dic[k] = np.concatenate(items, axis=0)

    self.memory_chunk.append(dic)

    util.log('add another memory chunk')
    util.log('memory chunk size:    %s', self.single_data_size)
    util.log('total data size:    %s', self.total_data_size)

    self.data = []
    self.single_data_size = 0
    self.count += 1
Пример #54
0
    def __init__(self, learningRate, imgShape, init_model=None):
        self.learningRate = learningRate
        self.numColor, self.imgSize, _, self.batchSize = imgShape
        self.imgShapes = [imgShape]
        self.inputShapes = [(self.numColor * (self.imgSize**2), self.batchSize)
                            ]
        self.layers = []
        self.outputs = []
        self.grads = []
        self.output = None
        self.save_layers = None
        self.save_output = []

        self.numCase = self.cost = self.correct = 0.0

        self.numConv = 0

        if init_model is None:
            util.log(
                'initial model not provided, network doesn\'t have any layer')
            return

        if 'layers' in init_model:
            # Loading from a checkpoint
            add_layers(FastNetBuilder(), self, init_model['layers'])
        else:
            if is_cudaconvnet_config(init_model):
                # AlexK config file
                add_layers(CudaconvNetBuilder(), self, init_model)
            else:
                # FastNet config file
                add_layers(FastNetBuilder(), self, init_model)
            self.adjust_learning_rate(self.learningRate)

        util.log('Learning rates:')
        for l in self.layers:
            if isinstance(l, WeightedLayer):
                util.log('%s: %s %s', l.name, getattr(l, 'epsW', 0),
                         getattr(l, 'epsB', 0))
Пример #55
0
  def __init__(self, learningRate, imgShape, init_model = None):
    self.learningRate = learningRate
    self.numColor, self.imgSize, _ , self.batchSize = imgShape
    self.imgShapes = [imgShape]
    self.inputShapes = [(self.numColor * (self.imgSize ** 2), self.batchSize)]
    self.layers = []
    self.outputs = []
    self.grads = []
    self.output = None
    self.save_layers = None
    self.save_output = []

    self.numCase = self.cost = self.correct = 0.0

    self.numConv = 0

    if init_model is None:
      util.log('initial model not provided, network doesn\'t have any layer')
      return

    if 'layers' in init_model:
      # Loading from a checkpoint
      add_layers(FastNetBuilder(), self, init_model['layers'])
    else:
      if is_cudaconvnet_config(init_model):
        # AlexK config file
        add_layers(CudaconvNetBuilder(), self, init_model)
      else:
        # FastNet config file
        add_layers(FastNetBuilder(), self, init_model)
      self.adjust_learning_rate(self.learningRate)

    util.log('Learning rates:')
    for l in self.layers:
      if isinstance(l, WeightedLayer):
        util.log('%s: %s %s', l.name, getattr(l, 'epsW', 0), getattr(l, 'epsB', 0))
Пример #56
0
    param_dict['num_batch'] = num_batch[0]
  else:
    param_dict['num_batch'] = num_batch

  param_dict['num_group_list'] = util.string_to_int_list(args.num_group_list)
  param_dict['num_caterange_list'] = util.string_to_int_list(args.num_caterange_list)
  param_dict['output_dir'] = args.output_dir
  param_dict['output_method'] = args.output_method
  param_dict['replaynet_epoch'] = args.replaynet_epoch
  param_dict['frag_epoch'] = args.frag_epoch

  train_layer_output_dumper = None
  test_layer_output_dumper = None
  if param_dict['output_method'] == 'disk':
    if param_dict['output_dir'] != '':
      train_layer_output_path = os.path.join(param_dict['output_dir'], 'train_data.pickle')
      param_dict['train_layer_output_path'] = train_layer_output_path
      train_layer_output_dumper = DataDumper(train_layer_output_path)
      test_layer_output_path = os.path.join(param_dict['output_dir'], 'test_data.pickle')
      param_dict['test_layer_output_path'] = test_layer_output_path
      test_layer_output_dumper = DataDumper(test_layer_output_path)
  elif param_dict['output_method'] == 'memory':
    train_layer_output_dumper = MemoryDataHolder()
    test_layer_output_dumper = MemoryDataHolder()
  param_dict['train_layer_output_dumeper'] = train_layer_output_dumper
  param_dict['test_layer_output_dumeper'] = test_layer_output_dumper

  trainer = Trainer.get_trainer_by_name(trainer, param_dict)
  util.log('start to train...')
  trainer.train(args.num_epoch)
Пример #57
0
 def _start_read(self):
   util.log('Starting reader...')
   assert self._reader is None
   self._reader = ReaderThread(self._data_queue, self.dp)
   self._reader.start()
Пример #58
0
  def __init__(self, data_dir, batch_range=None, category_range=None, batch_size=1024):
    DataProvider.__init__(self, data_dir, batch_range)
    self.img_size = 256
    self.border_size = 16
    self.inner_size = 224
    self.batch_size = batch_size

    # self.multiview = dp_params['multiview_test'] and test
    self.multiview = 0
    self.num_views = 5 * 2
    self.data_mult = self.num_views if self.multiview else 1

    self.buffer_idx = 0
    
    dirs = glob.glob(data_dir + '/n*')
    synid_to_dir = {}
    for d in dirs:
      synid_to_dir[basename(d)[1:]] = d

    if category_range is None:
      cat_dirs = dirs
    else:
      cat_dirs = []
      for i in category_range:
        synid = self.batch_meta['label_to_synid'][i]
        # util.log('Using category: %d, synid: %s, label: %s', i, synid, self.batch_meta['label_names'][i])
        cat_dirs.append(synid_to_dir[synid])

    self.images = []
    batch_dict = dict((k, k) for k in self.batch_range)

    for d in cat_dirs:
      img_files = list()
      img_files.extend(glob.glob(d + '/*.jpg'))
      img_files.extend(glob.glob(d + '/*.jpeg'))
      img_files.extend(glob.glob(d + '/*.JPG'))
      img_files.extend(glob.glob(d + '/*.JPEG'))
      img_files.sort()
      imgs = [v for i, v in enumerate(img_files) if i in batch_dict]
    
      self.images.extend(imgs)

    self.images = np.array(self.images)

    # build index vector into 'images' and split into groups of batch-size
    image_index = np.arange(len(self.images))
    np.random.shuffle(image_index)
    
    self.batches = np.array_split(image_index,
                                  util.divup(len(self.images), batch_size))

    self.batch_range = range(len(self.batches))

    util.log('Starting data provider with %d batches', len(self.batches))
    np.random.shuffle(self.batch_range)

    imagemean = cPickle.loads(open(data_dir + "image-mean.pickle").read())
    self.data_mean = (imagemean['data']
        .astype(np.single)
        .T
        .reshape((3, 256, 256))[:, self.border_size:self.border_size + self.inner_size, self.border_size:self.border_size + self.inner_size]
        .reshape((self.get_data_dims(), 1)))
Пример #59
0
    def train(self, num_epochs):
        self.print_net_summary()
        util.log('Starting training...')

        start_epoch = self.curr_epoch

        clear_w = gpuarray.to_gpu(
            np.eye(self.net.layers[-2].weight.shape[0], dtype=np.float32))

        while (self.curr_epoch - start_epoch <= num_epochs
               and self.should_continue_training()):
            batch_start = time.time()
            train_data = self.train_dp.get_next_batch(self.batch_size)
            self.curr_epoch = train_data.epoch
            self.curr_batch += 1

            input, label = train_data.data, train_data.labels

            if self.train_dp.is_curr_batch_noisy == False:
                assert (self.net.layers[-2].name == 'noise')
                noisy_eps = self.net.layers[-2].epsW
                self.net.layers[-2].epsW = 0
                noisy_w = self.net.layers[-2].weight
                self.net.layers[-2].weight = clear_w
            else:
                if hasattr(self, 'noisy_factor'):
                    self.net.adjust_learning_rate(self.noisy_factor)

            self.net.train_batch(input, label)

            if self.train_dp.is_curr_batch_noisy == False:
                self.net.layers[-2].epsW = noisy_eps
                self.net.layers[-2].weight = noisy_w
            else:
                if hasattr(self, 'noisy_factor'):
                    self.net.adjust_learning_rate(1. / self.noisy_factor)

            cost, correct, numCase = self.net.get_batch_information()
            self.train_outputs += [({
                'logprob': [cost, 1 - correct]
            }, numCase, self.elapsed())]
            print >> sys.stderr, '%d.%d: error: %f logreg: %f time: %f' % (
                self.curr_epoch, self.curr_batch, 1 - correct, cost,
                time.time() - batch_start)

            if self.check_test_data():
                noisy_w = self.net.layers[-2].weight
                self.net.layers[-2].weight = clear_w
                self.get_test_error()
                self.net.layers[-2].weight = noisy_w

            if self.factor != 1.0 and self.check_adjust_lr():
                self.adjust_lr()

            if self.check_save_checkpoint():
                self.save_checkpoint()

        #self.get_test_error()
        self.save_checkpoint()
        self.report()
        self._finished_training()
Пример #60
0
 def _log(self, fmt, *args):
     util.log('%s :: %s', rank, fmt % args)