Пример #1
0
def train(image_path, model_path, gpu, latent_width, color_channels, batch,
          epoch, shape, kl_ratio):
    if not image_path[-1] == '/':
        image_path += '/'
    if not os.path.exists(os.path.dirname(image_path)):
        os.makedirs(os.path.dirname(image_path))
    if model_path[-1] == '/':
        click.echo("Model Path should be a file path not a directory path. "
                   "Removing trailing '/' ...")
        model_path = model_path[:-1]

    file_paths = [
        os.path.join(image_path, f) for f in os.listdir(image_path) if
        os.path.isfile(os.path.join(image_path, f)) and not f.startswith('.')
    ]

    iae = ImageAutoEncoder(img_width=shape[0],
                           img_height=shape[1],
                           encode_layers=[1000, 700, 300],
                           decode_layers=[500, 700, 1000],
                           rec_kl_ratio=kl_ratio,
                           flag_gpu=gpu,
                           latent_width=latent_width,
                           color_channels=color_channels)

    iae.load_images(file_paths)
    iae.fit(batch_size=batch, n_epochs=epoch)
    iae.dump(model_path)
Пример #2
0
def train(image_path, model_path, gpu, latent_width, color_channels, batch,
          epoch, shape, kl_ratio):
    if not image_path[-1] == '/':
        image_path += '/'
    if not os.path.exists(os.path.dirname(image_path)):
            os.makedirs(os.path.dirname(image_path))
    if model_path[-1] == '/':
        click.echo("Model Path should be a file path not a directory path. "
                   "Removing trailing '/' ...")
        model_path = model_path[:-1]

    file_paths = [os.path.join(image_path, f)
                  for f in os.listdir(image_path)
                  if os.path.isfile(os.path.join(image_path, f))
                  and not f.startswith('.')]

    iae = ImageAutoEncoder(img_width=shape[0],
                           img_height=shape[1],
                           encode_layers=[1000, 700, 300],
                           decode_layers=[500, 700, 1000],
                           rec_kl_ratio=kl_ratio,
                           flag_gpu=gpu,
                           latent_width=latent_width,
                           color_channels=color_channels)

    iae.load_images(file_paths)
    iae.fit(batch_size=batch, n_epochs=epoch)
    iae.dump(model_path)
Пример #3
0
def generate(model_path, img_dir, number, extremity, mean, format, image_multiplier):
    click.echo("Loading Model...")
    model = ImageAutoEncoder.load(model_path)
    click.echo("Model Loaded")
    click.echo("Saving Images to {0} as {1}".format(img_dir, format))
    if not img_dir[-1] == '/':
        img_dir += '/'
    if not os.path.exists(os.path.dirname(img_dir)):
            os.makedirs(os.path.dirname(img_dir))
    variance = extremity
    vec = np.random.normal(mean, variance,
                           (number, model.latent_dim)).astype('float32')

    reconstructed = model.inverse_transform(vec) * 255.0

    for i in range(number):
        im = reconstructed[i]
        im = np.clip(image_multiplier*im/im.max(), 0, 255)
        im = Image.fromarray(np.uint8(reconstructed[i]))
        fname = "{0}.{1}".format(i, format)
        path = os.path.join(img_dir, fname)
        im.save(path)
Пример #4
0
def generate(model_path, img_dir, number, extremity, mean, format,
             image_multiplier):
    click.echo("Loading Model...")
    model = ImageAutoEncoder.load(model_path)
    click.echo("Model Loaded")
    click.echo("Saving Images to {0} as {1}".format(img_dir, format))
    if not img_dir[-1] == '/':
        img_dir += '/'
    if not os.path.exists(os.path.dirname(img_dir)):
        os.makedirs(os.path.dirname(img_dir))
    variance = extremity
    vec = np.random.normal(mean, variance,
                           (number, model.latent_dim)).astype('float32')

    reconstructed = model.inverse_transform(vec) * 255.0

    for i in range(number):
        im = reconstructed[i]
        im = np.clip(image_multiplier * im / im.max(), 0, 255)
        im = Image.fromarray(np.uint8(reconstructed[i]))
        fname = "{0}.{1}".format(i, format)
        path = os.path.join(img_dir, fname)
        im.save(path)