def get_similar_reviews_for_app(app_config_file, query, num_results): # Creating an AppConfig object app_config = AppConfig(utils.open_json(app_config_file)) # Log the current operation which is being performed. logging.info(logs.QUERY_START, FawkesActions.QUERY_SIMILAR_REVIEWS, "ALL", app_config.app.name) # Path where the user reviews were stored after parsing. processed_user_reviews_file_path = constants.PROCESSED_USER_REVIEWS_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data.base_folder, dir_name=app_config.fawkes_internal_config.data.processed_data_folder, app_name=app_config.app.name, ) # Loading the reviews reviews = utils.open_json(processed_user_reviews_file_path) # Converting the json object to Review object reviews = [Review.from_review_json(review) for review in reviews] # Filtering out reviews which are not applicable. reviews = filter_utils.filter_reviews_by_time( filter_utils.filter_reviews_by_channel( reviews, filter_utils.filter_disabled_review_channels(app_config), ), datetime.now(timezone.utc) - timedelta(days=app_config.algorithm_config.algorithm_days_filter)) similar_reviews = get_similar_reviews(reviews, query, num_results) # Log the current operation which is being performed. logging.info(logs.QUERY_END, FawkesActions.QUERY_SIMILAR_REVIEWS, "ALL", app_config.app.name) # Create the intermediate folders query_results_file_path = constants.QUERY_RESULTS_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data.base_folder, dir_name=app_config.fawkes_internal_config.data.query_folder, app_name=app_config.app.name, query_hash=utils.calculate_hash(query)) dir_name = os.path.dirname(query_results_file_path) pathlib.Path(dir_name).mkdir(parents=True, exist_ok=True) utils.dump_json( [{ "score": score, "review": review.to_dict(), } for score, review in similar_reviews], query_results_file_path, )
def generate_keyword_weights(fawkes_config_file=constants.FAWKES_CONFIG_FILE): # Read the app-config.json file. fawkes_config = FawkesConfig(utils.open_json(fawkes_config_file)) # For every app registered in app-config.json we for app_config_file in fawkes_config.apps: # Creating an AppConfig object app_config = AppConfig(utils.open_json(app_config_file)) # First look at the category keywords. utils.dump_json( parse_keywords_file( app_config.algorithm_config.category_keywords_file), app_config.algorithm_config.category_keywords_weights_file, ) # Then look at the bug-feature keywords utils.dump_json( parse_keywords_file( app_config.algorithm_config.bug_feature_keywords_file, False), app_config.algorithm_config.bug_feature_keywords_weights_file, )
def run_algo(fawkes_config_file=constants.FAWKES_CONFIG_FILE): # Read the app-config.json file. fawkes_config = FawkesConfig(utils.open_json(fawkes_config_file)) # For every app registered in app-config.json we for app_config_file in fawkes_config.apps: # Creating an AppConfig object app_config = AppConfig(utils.open_json(app_config_file)) # Path where the user reviews were stored after parsing. parsed_user_reviews_file_path = constants.PARSED_USER_REVIEWS_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data.base_folder, dir_name=app_config.fawkes_internal_config.data.parsed_data_folder, app_name=app_config.app.name, ) # Loading the reviews reviews = utils.open_json(parsed_user_reviews_file_path) # Converting the json object to Review object reviews = [Review.from_review_json(review) for review in reviews] # Filtering out reviews which are not applicable. reviews = filter_utils.filter_reviews_by_time( filter_utils.filter_reviews_by_channel( reviews, filter_utils.filter_disabled_review_channels(app_config), ), datetime.now(timezone.utc) - timedelta(days=app_config.algorithm_config.algorithm_days_filter)) # Number of process to make num_processes = min(constants.PROCESS_NUMBER, os.cpu_count()) if constants.CIRCLECI in os.environ: num_processes = 2 # Adding sentiment with Pool(num_processes) as process: reviews = process.map(add_review_sentiment_score, reviews) if app_config.algorithm_config.categorization_algorithm != None and app_config.algorithm_config.category_keywords_weights_file != None: # We read from the topic file first topics = {} topics = utils.open_json( app_config.algorithm_config.category_keywords_weights_file) # Adding text-match categorization with Pool(num_processes) as process: reviews = process.map( partial(text_match_categortization, app_config=app_config, topics=topics), reviews) if app_config.algorithm_config.bug_feature_keywords_weights_file != None: # We read from the topic file first topics = {} topics = utils.open_json( app_config.algorithm_config.bug_feature_keywords_weights_file) # Adding bug/feature classification with Pool(num_processes) as process: reviews = process.map( partial(bug_feature_classification, topics=topics), reviews) if app_config.algorithm_config.categorization_algorithm == CategorizationAlgorithms.LSTM_CLASSIFICATION: # Load the TensorFlow model model = tf.keras.models.load_model( constants.LSTM_CATEGORY_MODEL_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data. base_folder, dir_name=app_config.fawkes_internal_config.data. models_folder, app_name=app_config.app.name, )) # Load the article tokenizer file tokenizer_json = utils.open_json( constants.LSTM_CATEGORY_ARTICLE_TOKENIZER_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data. base_folder, dir_name=app_config.fawkes_internal_config.data. models_folder, app_name=app_config.app.name, ), ) article_tokenizer = tf.keras.preprocessing.text.tokenizer_from_json( tokenizer_json) # Load the label tokenizer file tokenizer_json = utils.open_json( constants.LSTM_CATEGORY_LABEL_TOKENIZER_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data. base_folder, dir_name=app_config.fawkes_internal_config.data. models_folder, app_name=app_config.app.name, ), ) label_tokenizer = tf.keras.preprocessing.text.tokenizer_from_json( tokenizer_json) cleaned_labels = {} for review in reviews: label = review.derived_insight.category cleaned_label = re.sub(r'\W+', '', label) cleaned_label = cleaned_label.lower() cleaned_labels[cleaned_label] = label # Adding LSTM categorization reviews = lstm_classification(reviews, model, article_tokenizer, label_tokenizer, cleaned_labels) # Create the intermediate folders processed_user_reviews_file_path = constants.PROCESSED_USER_REVIEWS_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data.base_folder, dir_name=app_config.fawkes_internal_config.data. processed_data_folder, app_name=app_config.app.name, ) dir_name = os.path.dirname(processed_user_reviews_file_path) pathlib.Path(dir_name).mkdir(parents=True, exist_ok=True) utils.dump_json( [review.to_dict() for review in reviews], processed_user_reviews_file_path, )
def parse_reviews(fawkes_config_file = constants.FAWKES_CONFIG_FILE): # Read the app-config.json file. fawkes_config = FawkesConfig( utils.open_json(fawkes_config_file) ) # For every app registered in app-config.json we for app_config_file in fawkes_config.apps: # Creating an AppConfig object app_config = AppConfig( utils.open_json( app_config_file ) ) parsed_reviews = [] # We now read the review details for each channel for review_channel in app_config.review_channels: # We parse the channels only if its enabled! if review_channel.is_channel_enabled and review_channel.channel_type != ReviewChannelTypes.BLANK: raw_user_reviews_file_path = constants.RAW_USER_REVIEWS_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data.base_folder, dir_name=app_config.fawkes_internal_config.data.raw_data_folder, app_name=app_config.app.name, channel_name=review_channel.channel_name, extension=review_channel.file_type ) if review_channel.file_type == constants.JSON: # Parse JSON channel_reviews = parse_json( raw_user_reviews_file_path, review_channel, app_config ) elif review_channel.file_type == constants.CSV: # Parse CSV channel_reviews = parse_csv( raw_user_reviews_file_path, review_channel, app_config ) elif review_channel.file_type == constants.JSON_LINES: channel_reviews = parse_json_lines( raw_user_reviews_file_path, review_channel, app_config ) else: # Unsupported file format raise ( "Format not supported exception. Check your file-type key in your config." ) parsed_reviews += channel_reviews # Executing custom code after parsing. if app_config.custom_code_module_path != None: custom_code_module = importlib.import_module(app_config.custom_code_module_path, package=None) parsed_reviews = custom_code_module.run_custom_code_post_parse( parsed_reviews) # After parsing the reviews for that all channels, we dump it into a file. # The file has a particular format. # {base_folder}/{dir_name}/{app_name}/parsed-user-feedback.{extension} parsed_user_reviews_file_path = constants.PARSED_USER_REVIEWS_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data.base_folder, dir_name=app_config.fawkes_internal_config.data.parsed_data_folder, app_name=app_config.app.name, ) # Create the intermediate folders dir_name = os.path.dirname(parsed_user_reviews_file_path) pathlib.Path(dir_name).mkdir(parents=True, exist_ok=True) utils.dump_json( [parsed_review.to_dict() for parsed_review in parsed_reviews], parsed_user_reviews_file_path )
def run_algo(fawkes_config_file=constants.FAWKES_CONFIG_FILE): # Read the app-config.json file. fawkes_config = FawkesConfig(utils.open_json(fawkes_config_file)) # For every app registered in app-config.json we for app_config_file in fawkes_config.apps: # Creating an AppConfig object app_config = AppConfig(utils.open_json(app_config_file)) # Log the current operation which is being performed. logging.info(logs.OPERATION, FawkesActions.RUN_ALGO, "ALL", app_config.app.name) # Path where the user reviews were stored after parsing. parsed_user_reviews_file_path = constants.PARSED_USER_REVIEWS_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data.base_folder, dir_name=app_config.fawkes_internal_config.data.parsed_data_folder, app_name=app_config.app.name, ) # Loading the reviews reviews = utils.open_json(parsed_user_reviews_file_path) # Converting the json object to Review object reviews = [Review.from_review_json(review) for review in reviews] # Filtering out reviews which are not applicable. reviews = filter_utils.filter_reviews_by_time( filter_utils.filter_reviews_by_channel( reviews, filter_utils.filter_disabled_review_channels(app_config), ), datetime.now(timezone.utc) - timedelta(days=app_config.algorithm_config.algorithm_days_filter)) # Log the number of reviews we got. logging.info(logs.NUM_REVIEWS, len(reviews), "ALL", app_config.app.name) # Number of process to make num_processes = min(constants.PROCESS_NUMBER, os.cpu_count()) if constants.CIRCLECI in os.environ: num_processes = 2 # Running sentiment analysis reviews = run_sentiment_analysis(reviews, app_config, num_processes) # Running categorization reviews = run_categorization(reviews, app_config, num_processes) # Running bug/feature categorizatio reviews = run_bug_feature_categorization(reviews, app_config, num_processes) # Running the message encoding reviews = run_review_text_encoding(reviews, app_config, num_processes) # Create the intermediate folders processed_user_reviews_file_path = constants.PROCESSED_USER_REVIEWS_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data.base_folder, dir_name=app_config.fawkes_internal_config.data. processed_data_folder, app_name=app_config.app.name, ) dir_name = os.path.dirname(processed_user_reviews_file_path) pathlib.Path(dir_name).mkdir(parents=True, exist_ok=True) utils.dump_json( [review.to_dict() for review in reviews], processed_user_reviews_file_path, )
def generate_summary(fawkes_config_file=constants.FAWKES_CONFIG_FILE): """ @param{string}: fawkes_config_file - config file path @returns{map<string,list<string>>}: summarized_reviews - summarized reviews per category Main function to create a summary of reviews - queries to get reviews - preprocess reviews based on each category - cluster similar reviews - rank and summarize amongst cluster to provide a summarize """ # Read the app-config.json file. fawkes_config = FawkesConfig(utils.open_json(fawkes_config_file)) # For every app registered in app-config.json we- for app_config_file in fawkes_config.apps: # Creating an AppConfig object app_config = AppConfig(utils.open_json(app_config_file)) # Path where the user reviews were stored after parsing. processed_user_reviews_file_path = constants.PROCESSED_USER_REVIEWS_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data.base_folder, dir_name=app_config.fawkes_internal_config.data. processed_data_folder, app_name=app_config.app.name, ) # Loading the reviews reviews = utils.open_json(processed_user_reviews_file_path) # Converting the json object to Review object reviews = [Review.from_review_json(review) for review in reviews] reviews = queries.getVocByCategory(reviews) summarized_reviews = {} # For each category, generate a summary for category in reviews: summarized_category_review = [] # get reviews per category categorized_review = reviews[category] # Preprocess reviews sentences = preprocess_review(categorized_review) # number of sentences in a category should be atleast greater than # the number of clusters if (len(sentences) > app_config.algorithm_config.summarization.num_clusters - 1): clustered_sentences = k_means_classification( sentences, app_config.algorithm_config.summarization.num_clusters) for cluster in clustered_sentences.values(): if len(cluster) < constants.minimum_reviews_per_cluster: continue text = ". ".join(cluster) gen_summary = summarize_text( text, app_config.algorithm_config.summarization. summary_length_per_cluster, ) summarized_category_review.append(gen_summary) else: logging.info(logs.INSUFFICIENT_DATA, category) summarized_reviews[category] = summarized_category_review query_results_file_path = constants.REVIEW_SUMMARY_RESULTS_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data.base_folder, dir_name=app_config.fawkes_internal_config.data.query_folder, app_name=app_config.app.name, ) dir_name = os.path.dirname(query_results_file_path) pathlib.Path(dir_name).mkdir(parents=True, exist_ok=True) utils.dump_json([{ "summarized_reviews": summarized_reviews }], query_results_file_path) return summarized_reviews
def fetch_reviews(fawkes_config_file = constants.FAWKES_CONFIG_FILE): # Read the app-config.json file. fawkes_config = FawkesConfig( utils.open_json(fawkes_config_file) ) # For every app registered in app-config.json we for app_config_file in fawkes_config.apps: # Creating an AppConfig object app_config = AppConfig( utils.open_json( app_config_file ) ) # Each app has a list of review channels from which the user reviews are fetched. for review_channel in app_config.review_channels: if review_channel.is_channel_enabled and review_channel.channel_type != ReviewChannelTypes.BLANK: # Log the current operation which is being performed. logging.info(logs.OPERATION, FawkesActions.FETCH, review_channel.channel_name, app_config.app.name) reviews = [] # Depending on the channel type, we have different "fetchers" to get the data. if review_channel.channel_type == ReviewChannelTypes.TWITTER: reviews = tweets.fetch( review_channel ) elif review_channel.channel_type == ReviewChannelTypes.SALESFORCE: reviews = salesforce.fetch( review_channel ) elif review_channel.channel_type == ReviewChannelTypes.SPREADSHEET: reviews = spreadsheet.fetch( review_channel ) elif review_channel.channel_type == ReviewChannelTypes.CSV: reviews = comma_separated_values.fetch( review_channel ) elif review_channel.channel_type == ReviewChannelTypes.ANDROID: reviews = playstore.fetch( review_channel ) elif review_channel.channel_type == ReviewChannelTypes.IOS: reviews = appstore.fetch( review_channel ) elif review_channel.channel_type == ReviewChannelTypes.SPLUNK: reviews = splunk.fetch( review_channel ) elif review_channel.channel_type == ReviewChannelTypes.REMOTE_FILE: reviews = remote.fetch( review_channel ) elif review_channel.channel_type == ReviewChannelTypes.VERTICA: reviews = vertica.fetch( review_channel ) else: continue # Log the number of reviews we got. logging.info(logs.NUM_REVIEWS, len(reviews), review_channel.channel_name, app_config.app.name) # After fetching the review for that particular channel, we dump it into a file. # The file has a particular format. # {base_folder}/{dir_name}/{app_name}/{channel_name}-raw-feedback.{extension} raw_user_reviews_file_path = constants.RAW_USER_REVIEWS_FILE_PATH.format( base_folder=app_config.fawkes_internal_config.data.base_folder, dir_name=app_config.fawkes_internal_config.data.raw_data_folder, app_name=app_config.app.name, channel_name=review_channel.channel_name, extension=review_channel.file_type) # Create the intermediate folders dir_name = os.path.dirname(raw_user_reviews_file_path) pathlib.Path(dir_name).mkdir(parents=True, exist_ok=True) if review_channel.file_type == constants.JSON: utils.dump_json(reviews, raw_user_reviews_file_path) else: with open(raw_user_reviews_file_path, "w") as file: file.write(reviews) # There are lot of use-cases where we need to execute custom code after the data is fetched. # This might include data-transformation, cleanup etc. # This is the right place to do that. if app_config.custom_code_module_path != None: custom_code_module = importlib.import_module(app_config.custom_code_module_path, package=None) reviews = custom_code_module.run_custom_code_post_fetch()