Пример #1
0
    reference = js["nodes_reference"]
    base_nodes = map(int, js["nodes_base"].split(','))
    stack_nodes = map(int, js["nodes_stack"].split(','))
    final_nodes = []  #map(int, js["nodes_final"].split(','))

    num_att = 4
    num_output = 3

    renetFile = None
    if 'retrain' in js:
        renetFile = HOME + 'NNs/' + js['retrain'] + '.p'

    if mode == 'train':
        tr = DataSet(tr_data, js['block'], feature_len)
        # tr.set_t_scale(t_scale)
        tr.set_num_output(num_output)
        te = DataSet(te_data, js['block'], feature_len)
        # te.set_t_scale(t_scale)
        te.set_num_output(num_output)
    else:
        if mode == 'te':
            te = DataSet(te_data, js['block'], feature_len)
        else:
            te = DataSet(tr_data, js['block'], feature_len)
        te.set_num_output(num_output)

    sz_in = te.sz
    loop = js['loop']
    print "input shape", sz_in, "LR", lr, 'feature', feature_len

    if renetFile is not None:
Пример #2
0
    iterations = 10000
    js = Utils.load_json_file(config_file)

    dtype = torch.float
    device = torch.device("cpu")
    # device = torch.device("cuda:0") # Uncomment this to run on GPU

    cfg = Config(config_file)

    tr = DataSet(cfg.tr_data, cfg.memory_size, cfg.feature_len)
    te = DataSet(cfg.te_data, cfg.memory_size, cfg.feature_len)
    tr.set_net_type(cfg.net_type)
    te.set_net_type(cfg.net_type)
    tr.set_t_scale(cfg.t_scale)
    te.set_t_scale(cfg.t_scale)
    tr.set_num_output(cfg.num_output)
    te.set_num_output(cfg.num_output)
    att = te.sz[1]

    D_in = cfg.feature_len * att
    D_out = cfg.num_output

    tr_pre_data = tr.prepare(multi=1)
    for b in tr_pre_data:
        d = torch.from_numpy(b[0]).type(torch.FloatTensor)
        t = torch.from_numpy(b[1]).type(torch.FloatTensor)

    te_pre_data = te.prepare(multi=1)
    for b in te_pre_data:
        de = torch.from_numpy(b[0]).type(torch.FloatTensor)
        te = torch.from_numpy(b[1]).type(torch.FloatTensor)