def test_skywalkerX8_force_x_dir(): control_input = ControlInput() control_input.throttle = 0.0 t = 0 state = State() state.vx = 20.0 for j in range(3): state.pitch = state.pitch + 0.05 state.roll = state.roll + 0.05 state.yaw = state.yaw + 0.05 x_update = np.zeros(11) constants = SkywalkerX8Constants() for i in range(0, 11): control_input.throttle = i * 0.1 prop = IcedSkywalkerX8Properties(control_input) params = {"prop": prop, "wind": no_wind()} update = dynamics_kinetmatics_update(t, x=state.state, u=control_input.control_input, params=params) x_update[i] = update[6] S_p = constants.propeller_area C_p = constants.motor_efficiency_fact k_m = constants.motor_constant m = constants.mass K = 2 * m / (AIR_DENSITY * S_p * C_p * k_m**2) for i in range(0, 10): throttle_0 = i * 0.1 throttle_1 = (i + 1) * 0.1 assert np.allclose(K * (x_update[i + 1] - x_update[i]), throttle_1**2 - throttle_0**2)
def test_interconnected_system(): control_input = ControlInput() control_input.throttle = 0.5 wind_model = no_wind() state = State() state.vx = 20 prop = IcedSkywalkerX8Properties(control_input) outputs = [ "x", "y", "z", "roll", "pitch", "yaw", "vx", "vy", "vz", "ang_rate_x", "ang_rate_y", "ang_rate_z" ] aircraft_model = build_nonlin_sys(prop, wind_model, outputs) initial_control_input_state = ControlInput() initial_control_input_state.throttle = 0.4 motor_time_constant = 0.001 elevon_time_constant = 0.001 actuator_model = build_flying_wing_actuator_system(elevon_time_constant, motor_time_constant) x0 = np.concatenate( (initial_control_input_state.control_input, state.state)) connected_system = add_actuator(actuator_model, aircraft_model) t = np.linspace(0.0, 0.5, 10, endpoint=True) u = np.array([ control_input.control_input, ] * len(t)).transpose() T, yout_without_actuator = input_output_response(aircraft_model, t, U=u, X0=state.state) T, yout_with_actuator = input_output_response(connected_system, t, U=u, X0=x0) assert np.allclose(yout_with_actuator[6, :], yout_without_actuator[6, :], atol=5.e-3) assert np.allclose(yout_with_actuator[7, :], yout_without_actuator[7, :], atol=5.e-3) assert np.allclose(yout_with_actuator[8, :], yout_without_actuator[8, :], atol=5.e-3) assert np.allclose(yout_with_actuator[9, :], yout_without_actuator[9, :], atol=5.e-3) assert np.allclose(yout_with_actuator[10, :], yout_without_actuator[10, :], atol=5.e-3) assert np.allclose(yout_with_actuator[11, :], yout_without_actuator[11, :], atol=5.e-3)
def main(): # Initialize gain scheduled controller # Using two simple P-controllers, see also fcat.longitudinal_controller for more complicated examples # Note that this is just an example on how to build and simulate an aircraft system # The controllers are simple not tuned to get desired reference tracking controllers = [ SaturatedStateSpaceMatricesGS( A = -1*np.eye(1), B = np.zeros((1,1)), C = np.eye(1), D = np.zeros((1,1)), upper = 1, lower = -1, switch_signal = 0.3 ), SaturatedStateSpaceMatricesGS( A = -1*np.eye(1), B = np.zeros((1,1)), C = np.eye(1), D = np.zeros((1,1)), upper = 1, lower = -1, switch_signal = 0.6 ) ] # Using similar controllers for simplicity lat_gs_controller = init_gs_controller(controllers, Direction.LATERAL, 'icing') lon_gs_controller = init_gs_controller(controllers, Direction.LONGITUDINAL, 'icing') airspeed_pi_controller = init_airspeed_controller() control_input = ControlInput() control_input.throttle = 0.5 state = State() state.vx = 20 prop = IcedSkywalkerX8Properties(control_input) aircraft_model = build_nonlin_sys(prop, no_wind(), outputs=State.names+['icing', 'airspeed']) motor_time_constant = 0.001 elevon_time_constant = 0.001 actuator_model = build_flying_wing_actuator_system(elevon_time_constant, motor_time_constant) closed_loop = build_closed_loop(actuator_model, aircraft_model, lon_gs_controller, lat_gs_controller, airspeed_pi_controller) X0 = get_init_vector(closed_loop, control_input, state) constant_input = np.array([20, 0.04, -0.00033310605950459315]) sim_time = 15 t = np.linspace(0, sim_time, sim_time*5, endpoint=True) u = np.array([constant_input, ]*(len(t))).transpose() T, yout_non_lin, _ = input_output_response( closed_loop, U=u, T=t, X0=X0, return_x=True, method='BDF')
def test_dynamics_forces(): control_input = ControlInput() prop = SimpleTestAircraftNoMoments(control_input) t = 0 for i in range(-50, 101, 50): control_input.throttle = 0.8 control_input.elevator_deflection = i control_input.aileron_deflection = i control_input.rudder_deflection = i state = State() state.vx = 20.0 state.vy = 1 state.vz = 0 params = {"prop": prop, "wind": no_wind()} update = dynamics_kinetmatics_update(t=t, x=state.state, u=control_input.control_input, params=params) V_a = np.sqrt(np.sum(calc_airspeed(state, params['wind'].get(0.0))**2)) forces_aero_wind_frame = np.array([ -np.abs(control_input.elevator_deflection), control_input.aileron_deflection, -control_input.rudder_deflection ]) forces_aero_body_frame = wind2body(forces_aero_wind_frame, state, params['wind'].get(0)) force_propulsion = np.array([(2 * control_input.throttle)**2 - V_a**2, 0, 0]) force_gravity = inertial2body( np.array([0, 0, prop.mass() * GRAVITY_CONST]), state) forces_body = forces_aero_body_frame + force_propulsion + force_gravity vx_update_expect = (1 / prop.mass()) * forces_body[0] vy_update_expect = (1 / prop.mass()) * forces_body[1] vz_update_expect = (1 / prop.mass()) * forces_body[2] # No moments ang_rate_x_update_expect = 0 ang_rate_y_update_expect = 0 ang_rate_z_update_expect = 0 assert np.allclose(vx_update_expect, update[6]) assert np.allclose(vy_update_expect, update[7]) assert np.allclose(vz_update_expect, update[8]) assert np.allclose(ang_rate_x_update_expect, update[9]) assert np.allclose(ang_rate_y_update_expect, update[10]) assert np.allclose(ang_rate_z_update_expect, update[11])
def test_dynamics_moments(): control_input = ControlInput() t = 0 for i in range(-50, 51, 50): control_input.throttle = i control_input.elevator_deflection = i control_input.aileron_deflection = i control_input.rudder_deflection = i prop = SimpleTestAircraftNoForces(control_input) state = State() state.vx = 20.0 state.vy = 1 state.vz = 0 state.ang_rate_x = 0.157079633 state.ang_rate_y = 0.157079633 state.ang_rate_z = 0.157079633 params = {"prop": prop, "wind": no_wind()} update = dynamics_kinetmatics_update(t=t, x=state.state, u=control_input.control_input, params=params) moments_aero = np.array([ control_input.elevator_deflection, control_input.aileron_deflection, control_input.rudder_deflection ]) omega = np.array( [state.ang_rate_x, state.ang_rate_y, state.ang_rate_z]) coreolis_term = prop.inv_inertia_matrix().dot( np.cross(omega, prop.inertia_matrix().dot(omega))) ang_rate_x_update_expect = (2 / 3) * moments_aero[0] - ( 1 / 3) * moments_aero[2] - coreolis_term[0] ang_rate_y_update_expect = (1 / 2) * moments_aero[1] - coreolis_term[1] ang_rate_z_update_expect = (2 / 3) * moments_aero[2] - ( 1 / 3) * moments_aero[0] - coreolis_term[2] assert np.allclose(ang_rate_x_update_expect, update[9]) assert np.allclose(ang_rate_y_update_expect, update[10]) assert np.allclose(ang_rate_z_update_expect, update[11])
def linearize_system(infile: str) -> str: with open(infile) as f: data = load(f) aircraft = aircraft_property_from_dct(data['aircraft']) ctrl = ControlInput.from_dict(data['init_control']) state = State.from_dict(data['init_state']) config_dict = { "outputs": [ "x", "y", "z", "roll", "pitch", "yaw", "vx", "vy", "vz", "ang_rate_x", "ang_rate_y", "ang_rate_z" ] } sys = build_nonlin_sys(aircraft, no_wind(), config_dict['outputs'], None) actuator = actuator_from_dct(data['actuator']) xeq = state.state ueq = ctrl.control_input aircraft_with_actuator = add_actuator(actuator, sys) states_lin = np.concatenate((ueq, xeq)) linearized_sys = aircraft_with_actuator.linearize(states_lin, ueq) A, B, C, D = ssdata(linearized_sys) linsys = StateSpaceMatrices(A, B, C, D) return linsys
def test_kinematics(): control_input = ControlInput() prop = FrictionlessBall(control_input) outputs = [ "x", "y", "z", "roll", "pitch", "yaw", "vx", "vy", "vz", "ang_rate_x", "ang_rate_y", "ang_rate_z" ] system = build_nonlin_sys(prop, no_wind(), outputs) t = np.linspace(0.0, 10, 500, endpoint=True) state = State() state.vx = 20.0 state.vy = 1 for i in range(3): state.roll = 0 state.pitch = 0 state.yaw = 0 if i == 0: state.ang_rate_x = 0.157079633 state.ang_rate_y = 0 state.ang_rate_z = 0 elif i == 1: state.ang_rate_x = 0 state.ang_rate_y = 0.157079633 state.ang_rate_z = 0 elif i == 2: state.ang_rate_x = 0 state.ang_rate_y = 0 state.ang_rate_z = 0.157079633 T, yout = input_output_response(system, t, U=0, X0=state.state) pos = np.array(yout[:3]) eul_ang = np.array(yout[3:6]) vel_inertial = np.array( [np.zeros(len(t)), np.zeros(len(t)), np.zeros(len(t))]) for j in range(len(vel_inertial[0])): state.roll = yout[3, j] state.pitch = yout[4, j] state.yaw = yout[5, j] vel = np.array([yout[6, j], yout[7, j], yout[8, j]]) vel_inertial_elem = body2inertial(vel, state) vel_inertial[0, j] = vel_inertial_elem[0] vel_inertial[1, j] = vel_inertial_elem[1] vel_inertial[2, j] = vel_inertial_elem[2] vx_inertial_expect = 20 * np.ones(len(t)) vy_inertial_expect = 1 * np.ones(len(t)) vz_inertial_expect = GRAVITY_CONST * t x_expect = 20 * t y_expect = 1 * t z_expect = 0.5 * GRAVITY_CONST * t**2 roll_expect = state.ang_rate_x * t pitch_expect = state.ang_rate_y * t yaw_expect = state.ang_rate_z * t assert np.allclose(vx_inertial_expect, vel_inertial[0], atol=7e-3) assert np.allclose(vy_inertial_expect, vel_inertial[1], atol=5e-3) assert np.allclose(vz_inertial_expect, vel_inertial[2], atol=8e-3) assert np.allclose(x_expect, pos[0], atol=8e-2) assert np.allclose(y_expect, pos[1], atol=5e-2) assert np.allclose(z_expect, pos[2], atol=7e-2) assert np.allclose(roll_expect, eul_ang[0], atol=1e-3) assert np.allclose(pitch_expect, eul_ang[1], atol=1e-3) assert np.allclose(yaw_expect, eul_ang[2], atol=1e-3)
def main(): # Script showing how to simulate icedskywalkerX8 from config_file using controllers saved in file config_file = "examples/skywalkerX8_linearize.yml" lat_controller_file = "examples/inner_loop_controllers/single_robust_roll_ctrl.json" lon_controller_file = "examples/inner_loop_controllers/single_robust_pitch_ctrl.json" K_lat = get_state_space_from_file(lat_controller_file) K_lon = get_state_space_from_file(lon_controller_file) K_lat = SaturatedStateSpaceController(A=np.array(K_lat.A), B=np.array(K_lat.B), C=np.array(K_lat.C), D=np.array(K_lat.D), lower=-0.4, upper=0.4) K_lon = SaturatedStateSpaceController(A=np.array(K_lon.A), B=np.array(K_lon.B), C=np.array(K_lon.C), D=np.array(K_lon.D), lower=-0.4, upper=0.4) # Using similar controllers for simplicity lat_controller = init_robust_controller(K_lat, Direction.LATERAL) lon_controller = init_robust_controller(K_lon, Direction.LONGITUDINAL) airspeed_pi_controller = init_airspeed_controller() with open(config_file, 'r') as infile: data = load(infile) aircraft = aircraft_property_from_dct(data['aircraft']) ctrl = ControlInput.from_dict(data['init_control']) state = State.from_dict(data['init_state']) updates = { 'icing': [PropUpdate(0.5, 0.5), PropUpdate(5.0, 1.0)], } updater = PropertyUpdater(updates) aircraft_model = build_nonlin_sys(aircraft, no_wind(), outputs=State.names + ['icing', 'airspeed'], prop_updater=updater) actuator = actuator_from_dct(data['actuator']) closed_loop = build_closed_loop(actuator, aircraft_model, lon_controller, lat_controller, airspeed_pi_controller) X0 = get_init_vector(closed_loop, ctrl, state) constant_input = np.array([20, 0.2, -0.2]) sim_time = 15 t = np.linspace(0, sim_time, sim_time * 5, endpoint=True) u = np.array([ constant_input, ] * (len(t))).transpose() T, yout_non_lin, _ = input_output_response(closed_loop, U=u, T=t, X0=X0, return_x=True, method='BDF') plot_respons(T, yout_non_lin) plt.show()
def test_constant_wind(): wind_model = no_wind() assert np.allclose(wind_model.get(2.0), np.zeros(6)) wind_model = ConstantWind(np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])) assert np.allclose(wind_model.get(4.0), wind_model.wind)
def linearize(config: str, out: str, template: bool = False, trim: bool = False): """ Linearize the model specified via the config file """ if template: generate_linearize_template() return with open(config, 'r') as infile: data = load(infile) aircraft = aircraft_property_from_dct(data['aircraft']) ctrl = ControlInput.from_dict(data['init_control']) state = State.from_dict(data['init_state']) iu = [2, 3] config_dict = { "outputs": [ "x", "y", "z", "roll", "pitch", "yaw", "vx", "vy", "vz", "ang_rate_x", "ang_rate_y", "ang_rate_z" ] } sys = build_nonlin_sys(aircraft, no_wind(), config_dict['outputs'], None) idx = [2, 6, 7, 8, 9, 10, 11] y0 = state.state iy = [0, 1, 2, 5, 9, 10, 11] xeq = state.state ueq = ctrl.control_input if trim: print("Finding equillibrium point...") xeq, ueq = find_eqpt(sys, state.state, u0=ctrl.control_input, idx=idx, y0=y0, iy=iy, iu=iu) print("Equillibrium point found") print() print("Equilibrium state vector") print(f"x: {xeq[0]: .2e} m, y: {xeq[1]: .2e} m, z: {xeq[2]: .2e} m") print( f"roll: {rad2deg(xeq[3]): .1f} deg, pitch: {rad2deg(xeq[4]): .1f} deg" f", yaw: {rad2deg(xeq[5]): .1f} deg") print( f"vx: {xeq[6]: .2e} m/s, vy: {xeq[7]: .2e} m/s, vz: {xeq[8]: .2e} m/s" ) print( f"Ang.rates: x: {rad2deg(xeq[9]): .1f} deg/s, y: {rad2deg(xeq[10]): .1f} deg/s" f", z: {rad2deg(xeq[11]): .1f} deg/s") print() print("Equilibrium input control vector") print( f"elevator: {rad2deg(ueq[0]): .1f} deg, aileron: {rad2deg(ueq[1]): .1f} deg" f", rudder: {rad2deg(ueq[2]): .1f} deg, throttle: {ueq[3]: .1f}") print() actuator = actuator_from_dct(data['actuator']) if isinstance(actuator, InputOutputSystem): aircraft_with_actuator = add_actuator(actuator, sys) states_lin = np.concatenate((ueq, xeq)) linearized = aircraft_with_actuator.linearize(states_lin, ueq) else: linearized = sys.linearize(xeq, ueq) print("Linearization finished") A, B, C, D = ssdata(linearized) print("Found linear state space model on the form") print() print(" dx ") print(" ---- = Ax + Bu") print(" dt ") print() print("With observarion equation") print() print("y = Cx + Du") print() print("Eigenvalues of A:") eig = np.linalg.eigvals(A) print('\n'.join(f'{x:.2e}' for x in eig)) linsys = { 'A': A.tolist(), 'B': B.tolist(), 'C': C.tolist(), 'D': D.tolist(), 'xeq': xeq.tolist(), 'ueq': ueq.tolist() } if out is not None: with open(out, 'w') as outfile: json.dump(linsys, outfile, indent=2, sort_keys=True) print(f"Linear model written to {out}")