Пример #1
0
def test_train(input_units, hidden_units, batch_size, nr_samples, rgen):
    nn = FcClassifier(input_units, hidden_units)
    nn.init_random()
    x_in = rgen.randn(nr_samples, input_units)
    y_in = rgen.randint(2, size=nr_samples)

    cost_old = nn.evaluate(x_in.T, y_in)
    nn.train(x_in,
             y_in,
             learning_rate=0.0005,
             nr_epochs=1,
             batch_size=batch_size)
    cost_new = nn.evaluate(x_in.T, y_in)
    assert cost_old > cost_new
Пример #2
0
def test_evaluate(input_units, hidden_units, nr_samples, rgen):
    nn = FcClassifier(input_units, hidden_units)
    nn.init_random()
    parameters = nn.get_weights()
    weights = list(w for w, _ in parameters)
    biases = list(b for _, b in parameters)

    x_in = rgen.randn(input_units, nr_samples)
    y_in = rgen.randint(2, size=nr_samples)
    cost = nn.evaluate(x_in, y_in)

    y_ref = fcnn_predict(x_in, weights, biases, it.repeat(sigmoid))
    cost_ref = cross_entropy(y_in, y_ref)
    assert_almost_equal(cost, cost_ref)