logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.INFO, stream=sys.stdout) from tensorflow.python.framework import ops os.environ['CUDA_VISIBLE_DEVICES'] = '' img1 = skimage.io.imread("./test_data/tabby_cat.png") with tf.Session() as sess: images = tf.placeholder(dtype=tf.float32) feed_dict = {images: img1} batch_images = tf.expand_dims(images, 0) vgg_fcn = fcn16_vgg.FCN16VGG() with tf.name_scope("content_vgg"): vgg_fcn.build(batch_images, debug=True) print('Finished building Network.') logging.warning("Score weights are initialized random.") logging.warning("Do not expect meaningful results.") logging.info("Start Initializing Variabels.") init = tf.initialize_all_variables() sess.run(tf.initialize_all_variables()) print('Running the Network') tensors = [vgg_fcn.pred, vgg_fcn.pred_up]
rgb_image[:, :, 1] = image - fcn16_vgg.VGG_MEAN[1] rgb_image[:, :, 2] = image - fcn16_vgg.VGG_MEAN[0] rgb_image = scipy.misc.imresize(rgb_image, (height * scale_times, width * scale_times)) scp.misc.imsave(directory + "/" + name + "-filter-" + str(i) + ".jpg", rgb_image) with tf.device('/cpu:0'): config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: input_placeholder = tf.placeholder(tf.float32, [None, height, width, num_classes]) output_placeholder = tf.placeholder(tf.float32, [None, height, width, num_classes]) vgg_fcn = fcn16_vgg.FCN16VGG('./vgg16.npy') with tf.name_scope('content_vgg'): vgg_fcn.build(input_placeholder, train=True, num_classes=num_classes, debug=True) with tf.name_scope('loss'): loss = loss.loss(vgg_fcn.upscore32, output_placeholder, num_classes) optimizer = tf.train.AdamOptimizer(0.0001).minimize(loss) print('Finished building Network.') # Initializing the variables. init = tf.global_variables_initializer() # Run initialized variables. sess.run(init)
#img1 = skimage.io.imread("./test_data/tabby_cat.png") parser = argparse.ArgumentParser() parser.add_argument('--npypath',help="path to weights",default="/scratch/gallowaa/") parser.add_argument('--imgpath',help="path to input image",default="/scratch/gallowaa/") args = parser.parse_args() img1 = skimage.io.imread(args.imgpath+"2008_004499_02.png") with tf.Session() as sess: images = tf.placeholder("float") feed_dict = {images: img1} batch_images = tf.expand_dims(images, 0) vgg_fcn = fcn16_vgg.FCN16VGG(args.npypath+"vgg16.npy") with tf.name_scope("content_vgg"): vgg_fcn.build(batch_images, debug=True) print('Finished building Network.') logging.warning("Score weights are initialized random.") logging.warning("Do not expect meaningful results.") logging.info("Start Initializing Variabels.") init = tf.initialize_all_variables() sess.run(tf.initialize_all_variables()) print('Running the Network') tensors = [vgg_fcn.pred, vgg_fcn.pred_up]