def create_bq_view_of_joined_features_and_entities( source: BigQuerySource, entity_source: BigQuerySource, entity_names: List[str]) -> BigQuerySource: """ Creates BQ view that joins tables from `source` and `entity_source` with join key derived from `entity_names`. Returns BigQuerySource with reference to created view. """ bq_client = bigquery.Client() source_ref = table_reference_from_string(source.bigquery_options.table_ref) entities_ref = table_reference_from_string( entity_source.bigquery_options.table_ref) destination_ref = bigquery.TableReference( bigquery.DatasetReference(source_ref.project, source_ref.dataset_id), f"_view_{source_ref.table_id}_{datetime.now():%Y%m%d%H%M%s}", ) view = bigquery.Table(destination_ref) view.view_query = JOIN_TEMPLATE.format( entities=entities_ref, source=source_ref, entity_key=" AND ".join( [f"source.{e} = entities.{e}" for e in entity_names]), ) view.expires = datetime.now() + timedelta(days=1) bq_client.create_table(view) return BigQuerySource( event_timestamp_column=source.event_timestamp_column, created_timestamp_column=source.created_timestamp_column, table_ref=f"{view.project}:{view.dataset_id}.{view.table_id}", field_mapping=source.field_mapping, date_partition_column=source.date_partition_column, )
def stage_entities_to_bq(entity_source: pd.DataFrame, project: str, dataset: str) -> BigQuerySource: """ Stores given (entity) dataframe as new table in BQ. Name of the table generated based on current time. Table will expire in 1 day. Returns BigQuerySource with reference to created table. """ bq_client = bigquery.Client() destination = bigquery.TableReference( bigquery.DatasetReference(project, dataset), f"_entities_{datetime.now():%Y%m%d%H%M%s}", ) # prevent casting ns -> ms exception inside pyarrow entity_source["event_timestamp"] = entity_source[ "event_timestamp"].dt.floor("ms") load_job: bigquery.LoadJob = bq_client.load_table_from_dataframe( entity_source, destination) load_job.result() # wait until complete dest_table: bigquery.Table = bq_client.get_table(destination) dest_table.expires = datetime.now() + timedelta(days=1) bq_client.update_table(dest_table, fields=["expires"]) return BigQuerySource( event_timestamp_column="event_timestamp", table_ref= f"{destination.project}:{destination.dataset_id}.{destination.table_id}", )
def test_ingest_into_bq( feast_client: Client, customer_entity: Entity, driver_entity: Entity, bq_dataframe: pd.DataFrame, bq_dataset: str, pytestconfig, ): bq_project = pytestconfig.getoption("bq_project") bq_table_id = f"bq_staging_{datetime.now():%Y%m%d%H%M%s}" ft = FeatureTable( name="basic_featuretable", entities=["driver_id", "customer_id"], features=[ Feature(name="dev_feature_float", dtype=ValueType.FLOAT), Feature(name="dev_feature_string", dtype=ValueType.STRING), ], max_age=Duration(seconds=3600), batch_source=BigQuerySource( table_ref=f"{bq_project}:{bq_dataset}.{bq_table_id}", event_timestamp_column="datetime", created_timestamp_column="timestamp", ), ) # ApplyEntity feast_client.apply(customer_entity) feast_client.apply(driver_entity) # ApplyFeatureTable feast_client.apply(ft) feast_client.ingest(ft, bq_dataframe, timeout=120) bq_client = bigquery.Client(project=bq_project) # Poll BQ for table until the table has been created def try_get_table(): try: table = bq_client.get_table( bigquery.TableReference( bigquery.DatasetReference(bq_project, bq_dataset), bq_table_id ) ) except NotFound: return None, False else: return table, True wait_retry_backoff( retry_fn=try_get_table, timeout_secs=30, timeout_msg="Timed out trying to get bigquery table", ) query_string = f"SELECT * FROM `{bq_project}.{bq_dataset}.{bq_table_id}`" job = bq_client.query(query_string) query_df = job.to_dataframe() assert_frame_equal(query_df, bq_dataframe)
def simple_bq_source_using_query_arg(df, event_timestamp_column="") -> BigQuerySource: bq_source_using_table_ref = simple_bq_source_using_table_ref_arg( df, event_timestamp_column ) return BigQuerySource( query=f"SELECT * FROM {bq_source_using_table_ref.table_ref}", event_timestamp_column=event_timestamp_column, )
def test_bigquery_query_to_datastore_correctness(self): # create dataset ts = pd.Timestamp.now(tz="UTC").round("ms") data = { "id": [1, 2, 1], "value": [0.1, 0.2, 0.3], "ts_1": [ts - timedelta(minutes=2), ts, ts], "created_ts": [ts, ts, ts], } df = pd.DataFrame.from_dict(data) # load dataset into BigQuery job_config = bigquery.LoadJobConfig() table_id = f"{self.gcp_project}.{self.bigquery_dataset}.query_correctness_{int(time.time())}" query = f"SELECT * FROM `{table_id}`" job = self.client.load_table_from_dataframe(df, table_id, job_config=job_config) job.result() # create FeatureView fv = FeatureView( name="test_bq_query_correctness", entities=["driver_id"], features=[Feature("value", ValueType.FLOAT)], ttl=timedelta(minutes=5), input=BigQuerySource( event_timestamp_column="ts", created_timestamp_column="created_ts", field_mapping={ "ts_1": "ts", "id": "driver_id" }, date_partition_column="", query=query, ), ) config = RepoConfig( metadata_store="./metadata.db", project=f"test_bq_query_correctness_{int(time.time())}", provider="gcp", ) fs = FeatureStore(config=config) fs.apply([fv]) # run materialize() fs.materialize( [fv.name], datetime.utcnow() - timedelta(minutes=5), datetime.utcnow() - timedelta(minutes=0), ) # check result of materialize() response_dict = fs.get_online_features([f"{fv.name}:value"], [{ "driver_id": 1 }]).to_dict() assert abs(response_dict[f"{fv.name}:value"][0] - 0.3) < 1e-6
def prep_bq_fs_and_fv( bq_source_type: str, ) -> Iterator[Tuple[FeatureStore, FeatureView]]: client = bigquery.Client() gcp_project = client.project bigquery_dataset = "test_ingestion" dataset = bigquery.Dataset(f"{gcp_project}.{bigquery_dataset}") client.create_dataset(dataset, exists_ok=True) dataset.default_table_expiration_ms = (1000 * 60 * 60 * 24 * 14 ) # 2 weeks in milliseconds client.update_dataset(dataset, ["default_table_expiration_ms"]) df = create_dataset() job_config = bigquery.LoadJobConfig() table_ref = f"{gcp_project}.{bigquery_dataset}.{bq_source_type}_correctness_{int(time.time())}" query = f"SELECT * FROM `{table_ref}`" job = client.load_table_from_dataframe(df, table_ref, job_config=job_config) job.result() bigquery_source = BigQuerySource( table_ref=table_ref if bq_source_type == "table" else None, query=query if bq_source_type == "query" else None, event_timestamp_column="ts", created_timestamp_column="created_ts", date_partition_column="", field_mapping={ "ts_1": "ts", "id": "driver_id" }, ) fv = get_feature_view(bigquery_source) e = Entity( name="driver", description="id for driver", join_key="driver_id", value_type=ValueType.INT32, ) with tempfile.TemporaryDirectory() as repo_dir_name: config = RepoConfig( registry=str(Path(repo_dir_name) / "registry.db"), project=f"test_bq_correctness_{str(uuid.uuid4()).replace('-', '')}", provider="gcp", online_store=DatastoreOnlineStoreConfig( namespace="integration_test"), ) fs = FeatureStore(config=config) fs.apply([fv, e]) yield fs, fv
def bq_featuretable(bq_table_id): batch_source = BigQuerySource( table_ref=bq_table_id, timestamp_column="datetime", ) return FeatureTable( name="basic_featuretable", entities=["driver_id", "customer_id"], features=[ Feature(name="dev_feature_float", dtype=ValueType.FLOAT), Feature(name="dev_feature_string", dtype=ValueType.STRING), ], max_age=Duration(seconds=3600), batch_source=batch_source, )
def create_bq_view_of_joined_features_and_entities( source: BigQuerySource, entity_source: BigQuerySource, entity_names: List[str] ) -> BigQuerySource: """ Creates BQ view that joins tables from `source` and `entity_source` with join key derived from `entity_names`. Returns BigQuerySource with reference to created view. The BQ view will be created in the same BQ dataset as `entity_source`. """ from google.cloud import bigquery bq_client = bigquery.Client() source_ref = table_reference_from_string(source.bigquery_options.table_ref) entities_ref = table_reference_from_string(entity_source.bigquery_options.table_ref) destination_ref = bigquery.TableReference( bigquery.DatasetReference(entities_ref.project, entities_ref.dataset_id), f"_view_{source_ref.table_id}_{datetime.now():%Y%m%d%H%M%s}", ) view = bigquery.Table(destination_ref) join_template = """ SELECT source.* FROM `{entities.project}.{entities.dataset_id}.{entities.table_id}` entities JOIN `{source.project}.{source.dataset_id}.{source.table_id}` source ON ({entity_key})""" view.view_query = join_template.format( entities=entities_ref, source=source_ref, entity_key=" AND ".join([f"source.{e} = entities.{e}" for e in entity_names]), ) view.expires = datetime.now() + timedelta(days=1) bq_client.create_table(view) return BigQuerySource( event_timestamp_column=source.event_timestamp_column, created_timestamp_column=source.created_timestamp_column, table_ref=f"{view.project}:{view.dataset_id}.{view.table_id}", field_mapping=source.field_mapping, date_partition_column=source.date_partition_column, )
def simple_bq_source_using_table_ref_arg(df, event_timestamp_column=None ) -> BigQuerySource: client = bigquery.Client() gcp_project = client.project bigquery_dataset = "ds" dataset = bigquery.Dataset(f"{gcp_project}.{bigquery_dataset}") client.create_dataset(dataset, exists_ok=True) dataset.default_table_expiration_ms = ( 1000 * 60 * 60 # 60 minutes in milliseconds (seems to be minimum limit for gcloud) ) client.update_dataset(dataset, ["default_table_expiration_ms"]) table_ref = f"{gcp_project}.{bigquery_dataset}.table_1" job = client.load_table_from_dataframe(df, table_ref, job_config=bigquery.LoadJobConfig()) job.result() return BigQuerySource( table_ref=table_ref, event_timestamp_column=event_timestamp_column, )
def test_historical_features_from_bigquery_sources( provider_type, infer_event_timestamp_col ): start_date = datetime.now().replace(microsecond=0, second=0, minute=0) ( customer_entities, driver_entities, end_date, orders_df, start_date, ) = generate_entities(start_date, infer_event_timestamp_col) # bigquery_dataset = "test_hist_retrieval_static" bigquery_dataset = ( f"test_hist_retrieval_{int(time.time_ns())}_{random.randint(1000, 9999)}" ) with BigQueryDataSet(bigquery_dataset), TemporaryDirectory() as temp_dir: gcp_project = bigquery.Client().project # Orders Query table_id = f"{bigquery_dataset}.orders" stage_orders_bigquery(orders_df, table_id) entity_df_query = f"SELECT * FROM {gcp_project}.{table_id}" # Driver Feature View driver_df = driver_data.create_driver_hourly_stats_df( driver_entities, start_date, end_date ) driver_table_id = f"{gcp_project}.{bigquery_dataset}.driver_hourly" stage_driver_hourly_stats_bigquery_source(driver_df, driver_table_id) driver_source = BigQuerySource( table_ref=driver_table_id, event_timestamp_column="datetime", created_timestamp_column="created", ) driver_fv = create_driver_hourly_stats_feature_view(driver_source) # Customer Feature View customer_df = driver_data.create_customer_daily_profile_df( customer_entities, start_date, end_date ) customer_table_id = f"{gcp_project}.{bigquery_dataset}.customer_profile" stage_customer_daily_profile_bigquery_source(customer_df, customer_table_id) customer_source = BigQuerySource( table_ref=customer_table_id, event_timestamp_column="datetime", created_timestamp_column="", ) customer_fv = create_customer_daily_profile_feature_view(customer_source) driver = Entity(name="driver", join_key="driver_id", value_type=ValueType.INT64) customer = Entity(name="customer_id", value_type=ValueType.INT64) if provider_type == "local": store = FeatureStore( config=RepoConfig( registry=os.path.join(temp_dir, "registry.db"), project="default", provider="local", online_store=SqliteOnlineStoreConfig( path=os.path.join(temp_dir, "online_store.db"), ), offline_store=BigQueryOfflineStoreConfig(type="bigquery",), ) ) elif provider_type == "gcp": store = FeatureStore( config=RepoConfig( registry=os.path.join(temp_dir, "registry.db"), project="".join( random.choices(string.ascii_uppercase + string.digits, k=10) ), provider="gcp", offline_store=BigQueryOfflineStoreConfig(type="bigquery",), ) ) elif provider_type == "gcp_custom_offline_config": store = FeatureStore( config=RepoConfig( registry=os.path.join(temp_dir, "registry.db"), project="".join( random.choices(string.ascii_uppercase + string.digits, k=10) ), provider="gcp", offline_store=BigQueryOfflineStoreConfig( type="bigquery", dataset="foo" ), ) ) else: raise Exception("Invalid provider used as part of test configuration") store.apply([driver, customer, driver_fv, customer_fv]) event_timestamp = ( DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL if DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL in orders_df.columns else "e_ts" ) expected_df = get_expected_training_df( customer_df, customer_fv, driver_df, driver_fv, orders_df, event_timestamp, ) job_from_sql = store.get_historical_features( entity_df=entity_df_query, feature_refs=[ "driver_stats:conv_rate", "driver_stats:avg_daily_trips", "customer_profile:current_balance", "customer_profile:avg_passenger_count", "customer_profile:lifetime_trip_count", ], ) actual_df_from_sql_entities = job_from_sql.to_df() assert_frame_equal( expected_df.sort_values( by=[event_timestamp, "order_id", "driver_id", "customer_id"] ).reset_index(drop=True), actual_df_from_sql_entities.sort_values( by=[event_timestamp, "order_id", "driver_id", "customer_id"] ).reset_index(drop=True), check_dtype=False, ) job_from_df = store.get_historical_features( entity_df=orders_df, feature_refs=[ "driver_stats:conv_rate", "driver_stats:avg_daily_trips", "customer_profile:current_balance", "customer_profile:avg_passenger_count", "customer_profile:lifetime_trip_count", ], ) if provider_type == "gcp_custom_offline_config": # Make sure that custom dataset name is being used from the offline_store config assertpy.assert_that(job_from_df.query).contains("foo.entity_df") else: # If the custom dataset name isn't provided in the config, use default `feast` name assertpy.assert_that(job_from_df.query).contains("feast.entity_df") actual_df_from_df_entities = job_from_df.to_df() assert_frame_equal( expected_df.sort_values( by=[event_timestamp, "order_id", "driver_id", "customer_id"] ).reset_index(drop=True), actual_df_from_df_entities.sort_values( by=[event_timestamp, "order_id", "driver_id", "customer_id"] ).reset_index(drop=True), check_dtype=False, )
def test_historical_features_from_bigquery_sources(provider_type, infer_event_timestamp_col, capsys): start_date = datetime.now().replace(microsecond=0, second=0, minute=0) ( customer_entities, driver_entities, end_date, orders_df, start_date, ) = generate_entities(start_date, infer_event_timestamp_col) bigquery_dataset = ( f"test_hist_retrieval_{int(time.time_ns())}_{random.randint(1000, 9999)}" ) with BigQueryDataSet(bigquery_dataset), TemporaryDirectory() as temp_dir: gcp_project = bigquery.Client().project # Orders Query table_id = f"{bigquery_dataset}.orders" stage_orders_bigquery(orders_df, table_id) entity_df_query = f"SELECT * FROM {gcp_project}.{table_id}" # Driver Feature View driver_df = driver_data.create_driver_hourly_stats_df( driver_entities, start_date, end_date) driver_table_id = f"{gcp_project}.{bigquery_dataset}.driver_hourly" stage_driver_hourly_stats_bigquery_source(driver_df, driver_table_id) driver_source = BigQuerySource( table_ref=driver_table_id, event_timestamp_column="datetime", created_timestamp_column="created", ) driver_fv = create_driver_hourly_stats_feature_view(driver_source) # Customer Feature View customer_df = driver_data.create_customer_daily_profile_df( customer_entities, start_date, end_date) customer_table_id = f"{gcp_project}.{bigquery_dataset}.customer_profile" stage_customer_daily_profile_bigquery_source(customer_df, customer_table_id) customer_source = BigQuerySource( table_ref=customer_table_id, event_timestamp_column="datetime", created_timestamp_column="", ) customer_fv = create_customer_daily_profile_feature_view( customer_source) driver = Entity(name="driver", join_key="driver_id", value_type=ValueType.INT64) customer = Entity(name="customer_id", value_type=ValueType.INT64) if provider_type == "local": store = FeatureStore(config=RepoConfig( registry=os.path.join(temp_dir, "registry.db"), project="default", provider="local", online_store=SqliteOnlineStoreConfig(path=os.path.join( temp_dir, "online_store.db"), ), offline_store=BigQueryOfflineStoreConfig( type="bigquery", dataset=bigquery_dataset), )) elif provider_type == "gcp": store = FeatureStore(config=RepoConfig( registry=os.path.join(temp_dir, "registry.db"), project="".join( random.choices(string.ascii_uppercase + string.digits, k=10)), provider="gcp", offline_store=BigQueryOfflineStoreConfig( type="bigquery", dataset=bigquery_dataset), )) elif provider_type == "gcp_custom_offline_config": store = FeatureStore(config=RepoConfig( registry=os.path.join(temp_dir, "registry.db"), project="".join( random.choices(string.ascii_uppercase + string.digits, k=10)), provider="gcp", offline_store=BigQueryOfflineStoreConfig(type="bigquery", dataset="foo"), )) else: raise Exception( "Invalid provider used as part of test configuration") store.apply([driver, customer, driver_fv, customer_fv]) event_timestamp = (DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL if DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL in orders_df.columns else "e_ts") expected_df = get_expected_training_df( customer_df, customer_fv, driver_df, driver_fv, orders_df, event_timestamp, ) job_from_sql = store.get_historical_features( entity_df=entity_df_query, feature_refs=[ "driver_stats:conv_rate", "driver_stats:avg_daily_trips", "customer_profile:current_balance", "customer_profile:avg_passenger_count", "customer_profile:lifetime_trip_count", ], ) start_time = datetime.utcnow() actual_df_from_sql_entities = job_from_sql.to_df() end_time = datetime.utcnow() with capsys.disabled(): print( str(f"\nTime to execute job_from_sql.to_df() = '{(end_time - start_time)}'" )) assert sorted(expected_df.columns) == sorted( actual_df_from_sql_entities.columns) assert_frame_equal( expected_df.sort_values( by=[event_timestamp, "order_id", "driver_id", "customer_id" ]).reset_index(drop=True), actual_df_from_sql_entities[expected_df.columns].sort_values( by=[event_timestamp, "order_id", "driver_id", "customer_id" ]).reset_index(drop=True), check_dtype=False, ) table_from_sql_entities = job_from_sql.to_arrow() assert_frame_equal(actual_df_from_sql_entities, table_from_sql_entities.to_pandas()) timestamp_column = ("e_ts" if infer_event_timestamp_col else DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL) entity_df_query_with_invalid_join_key = ( f"select order_id, driver_id, customer_id as customer, " f"order_is_success, {timestamp_column}, FROM {gcp_project}.{table_id}" ) # Rename the join key; this should now raise an error. assertpy.assert_that(store.get_historical_features).raises( errors.FeastEntityDFMissingColumnsError).when_called_with( entity_df=entity_df_query_with_invalid_join_key, feature_refs=[ "driver_stats:conv_rate", "driver_stats:avg_daily_trips", "customer_profile:current_balance", "customer_profile:avg_passenger_count", "customer_profile:lifetime_trip_count", ], ) job_from_df = store.get_historical_features( entity_df=orders_df, feature_refs=[ "driver_stats:conv_rate", "driver_stats:avg_daily_trips", "customer_profile:current_balance", "customer_profile:avg_passenger_count", "customer_profile:lifetime_trip_count", ], ) # Rename the join key; this should now raise an error. orders_df_with_invalid_join_key = orders_df.rename( {"customer_id": "customer"}, axis="columns") assertpy.assert_that(store.get_historical_features).raises( errors.FeastEntityDFMissingColumnsError).when_called_with( entity_df=orders_df_with_invalid_join_key, feature_refs=[ "driver_stats:conv_rate", "driver_stats:avg_daily_trips", "customer_profile:current_balance", "customer_profile:avg_passenger_count", "customer_profile:lifetime_trip_count", ], ) # Make sure that custom dataset name is being used from the offline_store config if provider_type == "gcp_custom_offline_config": assertpy.assert_that(job_from_df.query).contains("foo.entity_df") else: assertpy.assert_that( job_from_df.query).contains(f"{bigquery_dataset}.entity_df") start_time = datetime.utcnow() actual_df_from_df_entities = job_from_df.to_df() end_time = datetime.utcnow() with capsys.disabled(): print( str(f"Time to execute job_from_df.to_df() = '{(end_time - start_time)}'\n" )) assert sorted(expected_df.columns) == sorted( actual_df_from_df_entities.columns) assert_frame_equal( expected_df.sort_values( by=[event_timestamp, "order_id", "driver_id", "customer_id" ]).reset_index(drop=True), actual_df_from_df_entities[expected_df.columns].sort_values( by=[event_timestamp, "order_id", "driver_id", "customer_id" ]).reset_index(drop=True), check_dtype=False, ) table_from_df_entities = job_from_df.to_arrow() assert_frame_equal(actual_df_from_df_entities, table_from_df_entities.to_pandas())
def test_historical_features_from_bigquery_sources(): start_date = datetime.now().replace(microsecond=0, second=0, minute=0) ( customer_entities, driver_entities, end_date, orders_df, start_date, ) = generate_entities(start_date) # bigquery_dataset = "test_hist_retrieval_static" bigquery_dataset = f"test_hist_retrieval_{int(time.time())}" with BigQueryDataSet(bigquery_dataset), TemporaryDirectory() as temp_dir: gcp_project = bigquery.Client().project # Orders Query table_id = f"{bigquery_dataset}.orders" stage_orders_bigquery(orders_df, table_id) entity_df_query = f"SELECT * FROM {gcp_project}.{table_id}" # Driver Feature View driver_df = driver_data.create_driver_hourly_stats_df( driver_entities, start_date, end_date) driver_table_id = f"{gcp_project}.{bigquery_dataset}.driver_hourly" stage_driver_hourly_stats_bigquery_source(driver_df, driver_table_id) driver_source = BigQuerySource( table_ref=driver_table_id, event_timestamp_column="datetime", created_timestamp_column="created", ) driver_fv = create_driver_hourly_stats_feature_view(driver_source) # Customer Feature View customer_df = driver_data.create_customer_daily_profile_df( customer_entities, start_date, end_date) customer_table_id = f"{gcp_project}.{bigquery_dataset}.customer_profile" stage_customer_daily_profile_bigquery_source(customer_df, customer_table_id) customer_source = BigQuerySource( table_ref=customer_table_id, event_timestamp_column="datetime", created_timestamp_column="created", ) customer_fv = create_customer_daily_profile_feature_view( customer_source) driver = Entity(name="driver", value_type=ValueType.INT64) customer = Entity(name="customer", value_type=ValueType.INT64) store = FeatureStore(config=RepoConfig( registry=os.path.join(temp_dir, "registry.db"), project="default", provider="gcp", online_store=OnlineStoreConfig(local=LocalOnlineStoreConfig( path=os.path.join(temp_dir, "online_store.db"), )), )) store.apply([driver, customer, driver_fv, customer_fv]) expected_df = get_expected_training_df( customer_df, customer_fv, driver_df, driver_fv, orders_df, ) job_from_sql = store.get_historical_features( entity_df=entity_df_query, feature_refs=[ "driver_stats:conv_rate", "driver_stats:avg_daily_trips", "customer_profile:current_balance", "customer_profile:avg_passenger_count", "customer_profile:lifetime_trip_count", ], ) actual_df_from_sql_entities = job_from_sql.to_df() assert_frame_equal( expected_df.sort_values(by=[ ENTITY_DF_EVENT_TIMESTAMP_COL, "order_id", "driver_id", "customer_id", ]).reset_index(drop=True), actual_df_from_sql_entities.sort_values(by=[ ENTITY_DF_EVENT_TIMESTAMP_COL, "order_id", "driver_id", "customer_id", ]).reset_index(drop=True), check_dtype=False, ) job_from_df = store.get_historical_features( entity_df=orders_df, feature_refs=[ "driver_stats:conv_rate", "driver_stats:avg_daily_trips", "customer_profile:current_balance", "customer_profile:avg_passenger_count", "customer_profile:lifetime_trip_count", ], ) actual_df_from_df_entities = job_from_df.to_df() assert_frame_equal( expected_df.sort_values(by=[ ENTITY_DF_EVENT_TIMESTAMP_COL, "order_id", "driver_id", "customer_id", ]).reset_index(drop=True), actual_df_from_df_entities.sort_values(by=[ ENTITY_DF_EVENT_TIMESTAMP_COL, "order_id", "driver_id", "customer_id", ]).reset_index(drop=True), check_dtype=False, )
def test_bigquery_ingestion_correctness(self): # create dataset ts = pd.Timestamp.now(tz="UTC").round("ms") checked_value = ( random.random() ) # random value so test doesn't still work if no values written to online store data = { "id": [1, 2, 1], "value": [0.1, 0.2, checked_value], "ts_1": [ts - timedelta(minutes=2), ts, ts], "created_ts": [ts, ts, ts], } df = pd.DataFrame.from_dict(data) # load dataset into BigQuery job_config = bigquery.LoadJobConfig() table_id = ( f"{self.gcp_project}.{self.bigquery_dataset}.correctness_{int(time.time())}" ) job = self.client.load_table_from_dataframe(df, table_id, job_config=job_config) job.result() # create FeatureView fv = FeatureView( name="test_bq_correctness", entities=["driver_id"], features=[Feature("value", ValueType.FLOAT)], ttl=timedelta(minutes=5), input=BigQuerySource( event_timestamp_column="ts", table_ref=table_id, created_timestamp_column="created_ts", field_mapping={ "ts_1": "ts", "id": "driver_id" }, date_partition_column="", ), ) config = RepoConfig( metadata_store="./metadata.db", project="default", provider="gcp", online_store=OnlineStoreConfig( local=LocalOnlineStoreConfig("online_store.db")), ) fs = FeatureStore(config=config) fs.apply([fv]) # run materialize() fs.materialize( ["test_bq_correctness"], datetime.utcnow() - timedelta(minutes=5), datetime.utcnow() - timedelta(minutes=0), ) # check result of materialize() entity_key = EntityKeyProto(entity_names=["driver_id"], entity_values=[ValueProto(int64_val=1)]) t, val = fs._get_provider().online_read("default", fv, entity_key) assert abs(val["value"].double_val - checked_value) < 1e-6