def main_roman(): (features, success_labels, yard_labels, progress_labels) = extract_features(2009, 2014) features, enc = encode_categorical_features(features, sparse=False) print enc.vocabulary_ configurations = {'success': {'labels': success_labels, 'target': 'success', 'regression': False}, 'yards': {'labels': yard_labels, 'target': 'yards', 'regression': True}, 'progress': {'labels': progress_labels, 'target': 'progress', 'regression': True}} selected_configuration = 'progress' neural_network_prediction(features=features, labels=configurations[selected_configuration]['labels'], k=5, team='all', target_name=configurations[selected_configuration]['target'], regression_task=configurations[selected_configuration]['regression'], epochs = [10], hidden_layers = [1, 10], hidden_units = [10, 50, 100], load_previous = True)
def main_brendan(): (features, labels, yards, progress) = extract_features(2009, 2014) #compare_RBF_parameters(features, labels) compute_regression_results(features,progress, "./regression_results_progress.txt") compute_regression_results(features,yards, "./regression_results_yards.txt")
def main_valentin(): (features, labels, _, _) = extract_features(2014, 2014) compare_RBF_parameters(features, labels)