Пример #1
0
ssvm = learners.NSlackSSVM(
    model, verbose=2, C=1, max_iter=1000, n_jobs=-1,
    tol=0.0001, show_loss_every=5,
    inactive_threshold=1e-3, inactive_window=10, batch_size=100)
ssvm.fit(X_valid, valid_Y)

print ssvm.score(X_valid,valid_Y)
print ssvm.score(X_test,test_Y)
predict = ssvm.predict(X_valid)
for i in range(0, len(X_valid)):
    predict_result = predict[i]
    fe = Feature()
    x = glob.glob("../data_road/training/image/um_000001.png")
    print len(x)
    fe.loadImage(x[0])
    fe.loadSuperpixelImage()
    image = fe.getImage()
    superpixels = valid_superpixels[i][0]
    newIm = np.zeros((image.shape[0], image.shape[1], image.shape[2]))
    numSuperpixels = np.max(superpixels)+1
    for i in xrange(0,numSuperpixels):
        indices = np.where(superpixels==i)
        prediction = predict_result[i]
        image[indices] = 1
    sp.showPlots("im_name", image, numSuperpixels, superpixels)
#superpixels = 
#sp.showPlots(x, y_pred[0], np.max(superpixels),superpixels):
#print y_pred

# we throw away void superpixels and flatten everything
Пример #2
0
valid_pixels_labels = []
test_pixels_labels = []
valid_files = []
test_files = []
valid_files_count = 0
test_files_count = 0
valid_superpixels = []
validationOriginalImage = []
test_superpixels = []
testOriginalImage = []
train_superpixels = []
for i in xrange(0,num_files):


    fe = Feature()
    fe.loadImage(im_file_names[i])
    fe.loadSuperpixelImage()

    #fe.loadSuperpixelFromFile(sp_file_names[i])
    fe.loadLabelImage(label_file_names[i])

    featureVectors = fe.getFeaturesVectors()
    labels = fe.getSuperPixelLabels()

    #Test purposes
    edges, edgeFeatures1, edgeFeatures2 = fe.getEdges()
    if file_labels[i] != TESTING_LABEL:   
        # store data
        if file_labels[i] == TRAINING_LABEL:
            train_edges.append(edges)
            train_edgesFeatures1.append(edgeFeatures1)
Пример #3
0
valid_edgesFeatures2 = []
valid_pixels_labels = []
test_pixels_labels = []
valid_files = []
test_files = []
valid_files_count = 0
test_files_count = 0
valid_superpixels = []
validationOriginalImage = []
test_superpixels = []
testOriginalImage = []
train_superpixels = []
for i in xrange(0, num_files):

    fe = Feature()
    fe.loadImage(im_file_names[i])
    fe.loadSuperpixelImage()

    #fe.loadSuperpixelFromFile(sp_file_names[i])
    fe.loadLabelImage(label_file_names[i])

    featureVectors = fe.getFeaturesVectors()
    labels = fe.getSuperPixelLabels()

    #Test purposes
    edges, edgeFeatures1, edgeFeatures2 = fe.getEdges()
    if file_labels[i] != TESTING_LABEL:
        # store data
        if file_labels[i] == TRAINING_LABEL:
            train_edges.append(edges)
            train_edgesFeatures1.append(edgeFeatures1)
Пример #4
0
                           tol=0.0001,
                           show_loss_every=5,
                           inactive_threshold=1e-3,
                           inactive_window=10,
                           batch_size=100)
ssvm.fit(X_valid, valid_Y)

print ssvm.score(X_valid, valid_Y)
print ssvm.score(X_test, test_Y)
predict = ssvm.predict(X_valid)
for i in range(0, len(X_valid)):
    predict_result = predict[i]
    fe = Feature()
    x = glob.glob("../data_road/training/image/um_000001.png")
    print len(x)
    fe.loadImage(x[0])
    fe.loadSuperpixelImage()
    image = fe.getImage()
    superpixels = valid_superpixels[i][0]
    newIm = np.zeros((image.shape[0], image.shape[1], image.shape[2]))
    numSuperpixels = np.max(superpixels) + 1
    for i in xrange(0, numSuperpixels):
        indices = np.where(superpixels == i)
        prediction = predict_result[i]
        image[indices] = 1
    sp.showPlots("im_name", image, numSuperpixels, superpixels)
#superpixels =
#sp.showPlots(x, y_pred[0], np.max(superpixels),superpixels):
#print y_pred

# we throw away void superpixels and flatten everything