def main(): path='/local/attale00/' allFiles = utils.getAllFiles(path+'Multi-PIE/extracted') allLabelFiles = utils.getAllFiles(path+'Multi-PIE/db_labels') np.random.shuffle(allLabelFiles) #get the labels from the database, for each person sliceat=250 labelstest=utils.parseLabelFiles(path+'Multi-PIE/db_labels','sex',allLabelFiles[0:sliceat],cutoffSeq='',suffix='') labelstraining = utils.parseLabelFiles(path+'Multi-PIE/db_labels','sex',allLabelFiles[sliceat:],cutoffSeq='',suffix='') #now generate the label dict for each file labsTest={} labsTraining={} for f in allFiles: if labelstest.has_key(f[0:3]+'.labels'): labsTest[f]=labelstest[f[0:3]+'.labels'] elif labelstraining.has_key(f[0:3]+'.labels'): labsTraining[f]=labelstraining[f[0:3]+'.labels' ] testSet = fg.dataContainer(labsTest) trainingSet = fg.dataContainer(labsTraining) roi=(0,64,0,64) ppc=(8,8) cpb=(8,8) fg.getHogFeature(testSet,roi,path=path+'Multi-PIE_grayScale64/',ending=None,extraMask = None,pixels_per_cell=ppc,cells_per_block=cpb) fg.getHogFeature(trainingSet,roi,path=path+'Multi-PIE_grayScale64/',ending=None,extraMask = None,pixels_per_cell=ppc, cells_per_block=cpb) testSet.targetNum=map(utils.mapSexLabel2Two,testSet.target) trainingSet.targetNum = map(utils.mapSexLabel2Two,trainingSet.target) rf1=classifierUtils.standardRF(max_features=np.sqrt(len(testSet.data[0]))) rf2=classifierUtils.standardRF(max_features=np.sqrt(len(trainingSet.data[0]))) rf1.fit(testSet.data,testSet.targetNum) s=rf1.score(trainingSet.data,trainingSet.targetNum) trainingSet.classifiedAs=rf1.predict(trainingSet.data) trainingSet.hasBeenClassified=True classifierUtils.evaluateClassification(trainingSet,{0:'male',1:'female'}) print 'Score: {}'.format(s) print '----------other way around ----\n' rf2.fit(trainingSet.data,trainingSet.targetNum) s=rf2.score(testSet.data,testSet.targetNum) testSet.classifiedAs=rf2.predict(testSet.data) testSet.hasBeenClassified=True classifierUtils.evaluateClassification(testSet,{0:'male',1:'female'}) print 'Score: {}'.format(s)
def main(mode): path = '/local/attale00/extracted_pascal__4__Multi-PIE' path_ea = path+'/color128/' allLabelFiles = utils.getAllFiles('/local/attale00/a_labels') labeledImages = [i[0:16]+'.png' for i in allLabelFiles] #labs=utils.parseLabelFiles(path+'/Multi-PIE/labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') labs=utils.parseLabelFiles('/local/attale00/a_labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') #fileNames = utils.getAllFiles(path_ea); #labs=utils.parseLabelFiles(path+'/labels/labels','mouth_opening',fileNames,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) roi=(50,74,96,160) #roi=(44,84,88,168) # eM=np.load('/home/attale00/Desktop/mouthMask.npy') # m=cv2.resize(np.uint8(eM),(256,256)); # strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) # dil = cv2.dilate(m,strel) # # m=dil>0; strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = 8, cells_per_block=(6,2),maskFromAlpha=False) fg.getColorHistogram(testSet,roi,path=path_ea,ending='.png',colorspace='lab',bins=20) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = np.sqrt(len(testSet.data[0])),min_split=5,max_depth=40) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,'s') elif mode in ['c']: print 'cross validation of data' print 'Scores' #print classifierUtils.standardCrossvalidation(rf,testSet,n_jobs=5) #_cvDissect(testSet,rf) classifierUtils.dissectedCV(rf,testSet) print '----' elif mode in ['save']: print 'saving new classifier' _saveRF(testSet) else: print 'not doing anything'
def patches(): path = '/local/attale00/AFLW_ALL/' path_ea = '/local/attale00/AFLW_cropped/multiPIE_cropped3/' allLabelFiles = utils.getAllFiles('/local/attale00/a_labels') labeledImages = [i[0:16]+'.png' for i in allLabelFiles] labs=utils.parseLabelFiles('/local/attale00/a_labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') fileNames = labeledImages; testSet = fg.dataContainer(labs) roi=(0,37,0,115) roi=None X=fg.getAllImagesFlat(path_ea,testSet.fileNames,(40,120),roi=roi) W=np.load('/home/attale00/Desktop/classifiers/patches/filter2.npy') m=np.load('/home/attale00/Desktop/classifiers/patches/meanI2.npy') X1=X-m data=np.dot(X1,W.T) for i in range(len(fileNames)): testSet.data[i].extend(data[i,:]) fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = 5, pixels_per_cell=(24,8),cells_per_block=(3,3),maskFromAlpha=False) fg.getColorHistogram(testSet,roi,path=path_ea,ending='.png',colorspace='lab',bins=20) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) clfPath = '/home/attale00/Desktop/classifiers/patches/rfICAHogColor' f=file(clfPath,'r') print 'classifier used: '+ f.name clf = pickle.load(f) testSet.classifiedAs=clf.predict(testSet.data) testSet.probabilities=clf.predict_proba(testSet.data) return testSet
def main(nJobs = 1): path = '/local/attale00/GoodPose/extracted_alpha/grayScale64' fileNames = utils.getAllFiles(path); labs=utils.parseLabelFiles('/local/attale00/GoodPose'+'/mouth_labels','mouth',fileNames,cutoffSeq='_0.png',suffix='_face0.labels') print('-----computing Features-----') roi2 = (0,32,0,64) mouthSet = fg.dataContainer(labs) #load the mask for the mouth room pixels and dilate it eM=np.load('/home/attale00/Desktop/mouthMask.npy') m=cv2.resize(np.uint8(eM),(256,256)); strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) dil = cv2.dilate(m,strel) m=dil>0; #get the features fg.getHogFeature(mouthSet,roi2,path=path+'/',ending=None,extraMask = None) #map the string labels to numbers (required by sklearn) #change the mapping here for different classifiers mouthSet.targetNum=map(utils.mapMouthLabels2Two,mouthSet.target) n_estimators = 100 min_split = 10 max_depth = 20 max_features = np.sqrt(len(mouthSet.data[0])) rf = classifierUtils.standardRF(max_features = max_features) rf2=classifierUtils.standardRF(max_features=max_features) score=classifierUtils.standardCrossvalidation(rf2,mouthSet) rf.fit(mouthSet.data,mouthSet.targetNum) pickle.dump(rf,open('/home/attale00/Desktop/classifiers/RandomForestMouthclassifier_12','w')) f=open('/home/attale00/Desktop/classifiers/RandomForestMouthclassifier_12.txt','w') f.write('Trained on aflw\n') f.write('Attribute: mouth' ) f.write('Features: getHogFeature(mouthSet,roi2,path=path,ending=None,extraMask = m) on 64*64 grayScale 3 direction bins \n') f.write('ROI:(0,32,0,64)\n') f.write('labels: closed, narrow: 0, open, wideOpen: 1\n') f.write('CV Score: {}\n'.format(score)) f.close()
def main(mode): path = '/local/attale00/AFLW_ALL' path_ea = path+'/color256/' fileNames = utils.getAllFiles(path_ea); labs=utils.parseLabelFiles(path+'/labels/labels','mouth_opening',fileNames,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) roi=(88,165,150,362) #roi=(44,84,88,168) # eM=np.load('/home/attale00/Desktop/mouthMask.npy') # m=cv2.resize(np.uint8(eM),(256,256)); # strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) # dil = cv2.dilate(m,strel) # # m=dil>0; fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = 4, cells_per_block=(26,9),maskFromAlpha=False) fg.getColorHistogram(testSet,roi,path=path_ea,ending='.png',colorspace='lab',bins=20) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = np.sqrt(len(testSet.data[0])),min_split=5,max_depth=40) print len(testSet.data) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,mode) elif mode in ['c']: print 'cross validation of data' #classifierUtils.standardCrossvalidation(rf,testSet,n_jobs=5) classifierUtils.dissectedCV(rf,testSet) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet) else: print 'not doing anything'
def main(mode): path='/local/attale00/' allFiles = utils.getAllFiles(path+'Multi-PIE/extracted') allLabelFiles = utils.getAllFiles(path+'Multi-PIE/labels') #allLabelFiles = utils.getAllFiles(path+'a_labels') labeledImages = [i[0:16]+'.png' for i in allLabelFiles] labs=utils.parseLabelFiles(path+'/Multi-PIE/labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') #labs=utils.parseLabelFiles(path+'a_labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) roi = (0,32,0,64) #roi = (128,256,0,256) eM=np.load('/home/attale00/Desktop/mouthMask.npy') m=cv2.resize(np.uint8(eM),(256,256)); strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) dil = cv2.dilate(m,strel) m=dil>0; fg.getHogFeature(testSet,roi,path=path+'Multi-PIE_grayScale64/',ending=None,extraMask = None) fg.getColorHistogram(testSet,(50,190,110,402),path = path+'/Multi-PIE/extracted/',ending=None,colorspace='lab',range=(1.,255.0),bins = 20) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) #testSet.targetNum = map(utils.mapGlassesLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = np.sqrt(len(testSet.data[0])),min_split=5,max_depth=40) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,mode) elif mode in ['c']: print 'cross validation of data' classifierUtils.dissectedCV(rf,testSet) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet,rf) else: print 'not doing anything'
def main(mode): path = '/local/attale00/extracted_pascal__4__Multi-PIE' path_ea = path+'/color256/' allLabelFiles = utils.getAllFiles('/local/attale00/a_labels') labeledImages = [i[0:16]+'.png' for i in allLabelFiles] #labs=utils.parseLabelFiles(path+'/Multi-PIE/labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') labs=utils.parseLabelFiles('/local/attale00/a_labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) roi=(88,165,150,362) #roi=(44,84,88,168) # eM=np.load('/home/attale00/Desktop/mouthMask.npy') # m=cv2.resize(np.uint8(eM),(256,256)); # strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) # dil = cv2.dilate(m,strel) # # m=dil>0; fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = 4, cells_per_block=(26,9),maskFromAlpha=False) fg.getColorHistogram(testSet,roi,path=path_ea,ending='.png',colorspace='lab',bins=20) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,'v') elif mode in ['c']: print 'cross validation of data' _cross_validate(testSet) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet) else: print 'not doing anything'
def main(mode): poses = multiPiePose() #poses = multiPiePoseOriginal() poseDict=splitByPose(poses,binmax=75, stepsize = 30) for k,v in poseDict.iteritems(): fn = [i[0] for i in v] labs=utils.parseLabelFiles(path_label,'mouth',fn,cutoffSeq='.png',suffix='_face0.labels') labs=dict((lk,lv) for (lk,lv) in labs.iteritems() if not lv.startswith('narr')) testSet = fg.dataContainer(labs) fg.getHogFeature(testSet,None,path=path_ea,ending='.png',extraMask = None,orientations = 9, cells_per_block=(3,3),pixels_per_cell=(24,8),maskFromAlpha=False) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = 30,min_split=12,max_depth=70) if mode in ['s','v']: print 'Classifying with loaded classifier' print '------------------- pose {}-----------------'.format(k) plt.figure() #obj=classifierUtils.classifyWithOld(path,testSet,mode,clfPath = '/home/attale00/Desktop/classifiers/thesis/poseSplit/pose{}'.format(k)) obj=classifierUtils.classifyWithOld(path,testSet,mode,clfPath = '/home/attale00/Desktop/classifiers/thesis/mirror/rfHogMirror'.format(k)) obj.plot(title='Mirrored,Pose: {}, ntot: {}, nOpen{}'.format(k,len(testSet.data),testSet.targetNum.count(1))) pickle.dump(obj,open('multiPie_mirror_aggregate{}'.format(k),'w')) elif mode in ['c']: print 'cross validation of data' rValues = classifierUtils.dissectedCV(rf,testSet) plt.title('Pose: {}, n: {}'.format(k,len(v))) #pickle.dump(rValues,open('patches_pose_hog_{}'.format(k),'w')) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet,rf,identifier = k)
def main(mode): path = '/local/attale00/AFLW_ALL/' path_ea = '/local/attale00/AFLW_cropped/cropped3/' # fileNames = utils.getAllFiles(path_ea); labs=utils.parseLabelFiles(path+'/labels/labels','mouth_opening',fileNames,cutoffSeq='.png',suffix='_face0.labels') roi=None testSet = fg.dataContainer(labs) testSetMirror = fg.dataContainer(labs) for f in range(len(testSetMirror.fileNames)): testSetMirror.fileNames[f]+='M' orientations = 9 fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = orientations, cells_per_block=(3,3),pixels_per_cell=(24,8),maskFromAlpha=False) fg.getHogFeature(testSetMirror,roi,path='/local/attale00/AFLW_cropped/mirrored/', ending='.png',orientations = orientations, cells_per_block=(3,3),pixels_per_cell=(24,8)) testSet.addContainer(testSetMirror) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = 30,min_split=12,max_depth=70) #rf = svm.NuSVC() #rf = linear_model.SGDClassifier(loss='perceptron', eta0=1, learning_rate='constant', penalty=None) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,mode) elif mode in ['c']: print 'cross validation of data' rValues = classifierUtils.dissectedCV(rf,testSet) pickle.dump(rValues,open('patches_cv_hog_{}'.format(orientations),'w')) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet,rf) else: print 'not doing anything'
def texture(): path = '/local/attale00/extracted_pascal__4__Multi-PIE' path_ea = path+'/color128/' allLabelFiles = utils.getAllFiles('/local/attale00/a_labels') labeledImages = [i[0:16]+'.png' for i in allLabelFiles] labs=utils.parseLabelFiles('/local/attale00/a_labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) roi=(50,74,96,160) X=fg.getAllImagesFlat(path_ea,testSet.fileNames,(128,256),roi=roi) W=np.load('/home/attale00/Desktop/classifiers/ica/filter1.npy') m=np.load('/home/attale00/Desktop/classifiers/ica/meanI1.npy') X1=X-m data=np.dot(X1,W.T) for i in range(len(testSet.data)): testSet.data[i].extend(data[i,:]) fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = 3, cells_per_block=(6,2),maskFromAlpha=False) fg.getColorHistogram(testSet,roi,path=path_ea,ending='.png',colorspace='lab',bins=10) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) clfPath = '/home/attale00/Desktop/classifiers/ica/rf128ICAHOGCOLOR' f=file(clfPath,'r') print 'classifier used: '+ f.name clf = pickle.load(f) testSet.classifiedAs=clf.predict(testSet.data) testSet.probabilities=clf.predict_proba(testSet.data) return testSet
def main(mode): path = '/local/attale00/GoodPose' path_ea = path+'/pascal128/' fileNames = utils.getAllFiles(path+'/targets'); labs=utils.parseLabelFiles(path+'/mouth_labels','mouth',fileNames,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) #roi=(88,165,150,362) roi=(44,84,88,168) eM=np.load('/home/attale00/Desktop/mouthMask.npy') m=cv2.resize(np.uint8(eM),(256,256)); strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) dil = cv2.dilate(m,strel) m=dil>0; fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = 5, cells_per_block=(8,3)) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,mode) elif mode in ['c']: print 'cross validation of data' _cross_validate(testSet) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet) else: print 'not doing anything'
def main(mode): path = '/local/attale00/AFLW_ALL/' path_ea = '/local/attale00/AFLW_cropped/mouth_img_error/' # fileNames = utils.getAllFiles(path_ea); labs=utils.parseLabelFiles(path+'/labels/labels','mouth_opening',fileNames,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) fg_mode = 0 size=(4,12) overlap=2 #size=(40,120) orientations = 9 roi=None fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = orientations, cells_per_block=(3,3),pixels_per_cell=(24,8),maskFromAlpha=False) print 'feature vector length: {}'.format(len(testSet.data[0])) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = np.sqrt(len(testSet.data[0])),min_split=13,max_depth=40) #rf = svm.NuSVC() #rf = linear_model.SGDClassifier(loss='perceptron', eta0=1, learning_rate='constant', penalty=None) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,mode) elif mode in ['c']: print 'cross validation of data' rValues = classifierUtils.dissectedCV(rf,testSet) pickle.dump(rValues,open('errorpatch_hog','w')) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet,rf) else: print 'not doing anything'
def main(mode): path = '/local/attale00/AFLW_ALL/' poses = aflwPose() poseDict=splitByPose(poses,binmax=100, stepsize = 40) for k,v in poseDict.iteritems(): fn = [i[0] for i in v] labs=utils.parseLabelFiles(path+'/labels/labels','mouth_opening',fn,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) fg.getHogFeature(testSet,None,path=path_ea,ending='.png',extraMask = None,orientations = 9, cells_per_block=(3,3),pixels_per_cell=(24,8),maskFromAlpha=False) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = 40,min_split=12,max_depth=70) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,mode) elif mode in ['c']: print 'cross validation of data' rValues = classifierUtils.dissectedCV(rf,testSet) plt.title('Pose: {}, n: {}'.format(k,len(v))) #pickle.dump(rValues,open('patches_pose_hog_{}'.format(k),'w')) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet,rf,identifier = k)
def main(mode): path_mp = '/local/attale00/extracted_pascal__4__Multi-PIE' path_eamp = path_mp+'/color128/' allLabelFiles = utils.getAllFiles('/local/attale00/a_labels') labeledImages = [i[0:16]+'.png' for i in allLabelFiles] #labs=utils.parseLabelFiles(path+'/Multi-PIE/labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') labsmp=utils.parseLabelFiles('/local/attale00/a_labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') path = '/local/attale00/AFLW_ALL' path_ea = path+'/color128/' fileNames = utils.getAllFiles(path_ea); labs=utils.parseLabelFiles(path+'/labels/labels','mouth_opening',fileNames,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) testSetmp = fg.dataContainer(labsmp) roi=(50,74,96,160) #roi=(44,84,88,168) # eM=np.load('/home/attale00/Desktop/mouthMask.npy') # m=cv2.resize(np.uint8(eM),(256,256)); # strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) # dil = cv2.dilate(m,strel) # # m=dil>0; X=fg.getAllImagesFlat(path_ea,testSet.fileNames,(128,256),roi=roi) Y=fg.getAllImagesFlat(path_eamp,testSetmp.fileNames,(128,256),roi=roi) Z=np.concatenate((X,Y),axis=0) # # perform ICA ica = FastICA(n_components=100,whiten=True) ica.fit(Z) meanI=np.mean(Z,axis=0) X1=X-meanI Y1=Y-meanI data=ica.transform(X1) datamp = ica.transform(Y1) filters=ica.components_ for i in range(len(testSet.fileNames)): testSet.data[i].extend(data[i,:]) for i in range(len(testSetmp.fileNames)): testSetmp.data[i].extend(datamp[i,:]) strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = 3, cells_per_block=(6,2),maskFromAlpha=False) fg.getColorHistogram(testSet,roi,path=path_ea,ending='.png',colorspace='lab',bins=10) fg.getHogFeature(testSetmp,roi,path=path_eamp,ending='.png',extraMask = None,orientations = 3, cells_per_block=(6,2),maskFromAlpha=False) fg.getColorHistogram(testSetmp,roi,path=path_eamp,ending='.png',colorspace='lab',bins=10) #pca # n_samples, n_features = X.shape # # mean_ = np.mean(X, axis=0) # X -= mean_ # U, S, V = linalg.svd(X) # explained_variance_ = (S ** 2) / n_samples # explained_variance_ratio_ = (explained_variance_ /explained_variance_.sum()) # K=V / S[:, np.newaxis] * np.sqrt(n_samples) # filters=K[:100] # data=np.dot(X,filters.T) testSet.addContainer(testSetmp) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = np.sqrt(len(testSet.data[0])),min_split=5,max_depth=40) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,mode) elif mode in ['c']: print 'cross validation of data' classifierUtils.dissectedCV(rf,testSet) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet,rf,filters=filters,meanI=meanI) else: print 'not doing anything'
def main(nJobs = 1): path = '/local/attale00/GoodPose' path_ea = path+'/extracted_alpha' path_adata = path_ea + '/a_data' fileNames = utils.getAllFiles(path+'/targets'); attribute = 'mouth' attribute_values = utils.parseLabelINIFile(path+'/mouth_labels/labels.ini',attribute); print('------------Attribute: \t'+attribute+' ---------------') for i in attribute_values: print('Value: \t'+i) print('----------------------------') print('----------parsing label files------') labs=utils.parseLabelFiles(path+'/mouth_labels','mouth',fileNames,cutoffSeq='.png',suffix='_face0.labels') #labs=utils.parseLabelFiles(path+'/mouth_labels/labels','glasses',fileNames,cutoffSeq='.png',suffix='_face0.labels') print('-----computing Features-----') #make 10 bin hist for each mouth #roi = (40,200,100,200) roi = (50,190,110,402) roi2=(0,128,0,256) roi=(0,64,0,128) #roi2=(128,256,0,256) mouthSet = fg.dataContainer(labs) #fg.getHistogram(20,roi,hrange=(0,255),dataC = mouthSet,path = path+'/extracted/gradients/Direction/',ending='_0.png') eM=np.load('/home/attale00/Desktop/mouthMask.npy') m=cv2.resize(np.uint8(eM),(256,256)); strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) dil = cv2.dilate(m,strel) m=dil>0; # em=m[roi[0]:roi[1],roi[2]:roi[3]] # m= m !=True fg.getHogFeature(mouthSet,roi2,path=path_ea+'/grayScale128/',ending='_0.png',extraMask = None) #fg.getPixelValues(mouthSet,roi,path=path_ea+'/',ending='_0.png',mask =m, scaleFactor = 10) #fg.getColorHistogram(mouthSet,roi,path=path_ea+'/',ending='_0.png',colorspace=None,range=(1.0,255.0),bins = 20) mouthSet.targetNum=map(utils.mapMouthLabels2Two,mouthSet.target) #mouthSet.targetNum=map(utils.mapGlassesLabels2Two,mouthSet.target) score=[] frac=np.arange(0.2,1.0,.05) for i in frac: trainingSet,testSet=mouthSet.splitInTestAndTraining(frac=i) rf=classifierUtils.standardRF(max_features = np.sqrt(len(mouthSet.data[0]))) rf.fit(trainingSet.data,trainingSet.targetNum) score.append(rf.score(testSet.data,testSet.targetNum)) testSet.hasBeenClassified=True testSet.classifiedAs=rf.predict(testSet.data) print '---------------- {} -----------'.format(i) classifierUtils.evaluateClassification(testSet,{0:'closed',1:'open'}) plt.plot(frac,score,'-*') plt.show() return
def main(mode): labelFiles='/local/attale00/aflw_original_labels' path_ea = '/local/attale00/AFLW_cropped/eyes/' fileNames = utils.getAllFiles(path_ea) goods = [] for f in fileNames: im = cv2.imread(path_ea+f) if im.shape[0] == 40 and im.shape[1] ==120: goods.append(f) fileNames = goods labs=utils.parseLabelFiles(labelFiles,'glasses',fileNames,cutoffSeq='.png',suffix='.labels') testSet = fg.dataContainer(labs) # # X=fg.getAllImagesFlat(path_ea,testSet.fileNames,(40,120),roi=roi) # # # # perform ICA # if mode not in ['s','v']: # ica = FastICA(n_components=100,whiten=True) # ica.fit(X) # meanI=np.mean(X,axis=0) # X1=X-meanI # data=ica.transform(X1) # filters=ica.components_ # # elif mode in ['s','v']: # W=np.load('/home/attale00/Desktop/classifiers/patches/filter2.npy') # m=np.load('/home/attale00/Desktop/classifiers/patches/meanI2.npy') # X1=X-m # data=np.dot(X1,W.T) # # for i in range(len(testSet.fileNames)): # testSet.data[i].extend(data[i,:]) # # strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) fg.getHogFeature(testSet,None,path=path_ea,ending='.png',extraMask = None,orientations = 5, pixels_per_cell=(24,8),cells_per_block=(3,3),maskFromAlpha=False) #testSet.targetNum=map(lambda x: 1 if x=='light' else 0,testSet.target) #rf = svm.NuSVC() #rf = linear_model.SGDClassifier(loss='perceptron', eta0=1, learning_rate='constant', penalty=None) if mode in ['s','v']: print 'Classifying with loaded classifier' obj=classifierUtils.classifyWithOld(path,testSet,mode,clfPath = '/home/attale00/Desktop/classifiers/thesis/color_only') #pickle.dump(obj,open('color_only','w')) elif mode in ['c']: print 'cross validation of data' testSet.targetNum=map(lambda x: 1 if x=='1' else 0,testSet.target) rf=classifierUtils.standardRF(max_features = 27,min_split=5,max_depth=60,n_estimators = 500) rValues = classifierUtils.dissectedCV(rf,testSet) plt.title('No glasses against rest') plt.show() #pickle.dump(rValues,open('patches_mp_','w')) elif mode in ['save']: print 'saving new classifier' testSet.targetNum=map(lambda x: 1 if x=='1' else 0,testSet.target) rf=classifierUtils.standardRF(max_features = 27,min_split=5,max_depth=60,n_estimators = 500) _saveRF(testSet,rf) else: print 'not doing anything'
def main(mode): path = '/local/attale00/AFLW_ALL' path_ea = path+'/color128/' fileNames = utils.getAllFiles(path_ea); labs=utils.parseLabelFiles(path+'/labels/labels','mouth_opening',fileNames,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) roi=None roi=(50,74,96,160) X=fg.getAllImagesFlat(path_ea,testSet.fileNames,(128,256),roi=roi) #Y=fg.getAllImagesFlat(path_mp,mpFiles,(128,256),roi=roi) #Z=np.concatenate((X,Y),axis=0) Z=X #perform ICA ica = FastICA(n_components=50,whiten=True) ica.fit(Z) meanI=np.mean(X,axis=0) X1=X-meanI data=ica.transform(X1) filters=ica.components_ for i in range(len(fileNames)): testSet.data[i].extend(data[i,:]) orientations = 4 bins=40 fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = orientations, cells_per_block=(6,2),maskFromAlpha=False) fg.getColorHistogram(testSet,roi,path=path_ea,ending='.png',colorspace='lab',bins=bins) #pca # n_samples, n_features = X.shape # # mean_ = np.mean(X, axis=0) # X -= mean_ # U, S, V = linalg.svd(X) # explained_variance_ = (S ** 2) / n_samples # explained_variance_ratio_ = (explained_variance_ /explained_variance_.sum()) # K=V / S[:, np.newaxis] * np.sqrt(n_samples) # filters=K[:100] # data=np.dot(X,filters.T) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = np.sqrt(len(testSet.data[0])),min_split=1,max_depth=70) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,mode) elif mode in ['c']: print 'cross validation of data' rValues = classifierUtils.dissectedCV(rf,testSet) pickle.dump(rValues,open('texture_combined'.format(orientations),'w')) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet,rf,filters=filters,meanI=meanI) else: print 'not doing anything' return
def main(mode): path = '/local/attale00/extracted_pascal__4__Multi-PIE' path_ea = path+'/color128/' allLabelFiles = utils.getAllFiles('/local/attale00/a_labels') labeledImages = [i[0:16]+'.png' for i in allLabelFiles] #labs=utils.parseLabelFiles(path+'/Multi-PIE/labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') labs=utils.parseLabelFiles('/local/attale00/a_labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) roi=(50,74,96,160) # X=fg.getAllImagesFlat(path_ea,testSet.fileNames,(128,256),roi=roi) # # # # perform ICA # if mode not in ['s','v']: # ica = FastICA(n_components=50,whiten=True) # ica.fit(X) # meanI=np.mean(X,axis=0) # X1=X-meanI # data=ica.transform(X1) # filters=ica.components_ # # elif mode in ['s','v']: # W=np.load('/home/attale00/Desktop/classifiers/thesis/filter3.npy') # m=np.load('/home/attale00/Desktop/classifiers/thesis/meanI3.npy') # X1=X-m # data=np.dot(X1,W.T) # # for i in range(len(testSet.data)): # testSet.data[i].extend(data[i,:]) ### # # # # # strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = 4, cells_per_block=(6,2),maskFromAlpha=False) fg.getPoseLabel(testSet,pathToPoseFiles='/local/attale00/poseLabels/multipie/') #fg.getColorHistogram(testSet,roi,path=path_ea,ending='.png',colorspace='lab',bins=40) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = np.sqrt(len(testSet.data[0])),min_split=5,max_depth=40) if mode in ['s','v']: print 'Classifying with loaded classifier' obj=classifierUtils.classifyWithOld(path,testSet,mode,clfPath = '/home/attale00/Desktop/classifiers/thesis/texture/hog_pose') pickle.dump(obj,open('hog_pose','w')) elif mode in ['c']: print 'cross validation of data' rValues = classifierUtils.dissectedCV(rf,testSet) pickle.dump(rValues,open('texture_mp_','w')) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet) else: print 'not doing anything'
def main(mode): path = '/local/attale00/AFLW_ALL/' path_ea = '/local/attale00/AFLW_cropped/cropped3/' # fileNames = utils.getAllFiles(path_ea); # minr = 10000; # for f in fileNames: # im = cv2.imread(path_ea+f,-1) # if im.shape[0]!=40 or im.shape[1]!=120: # print f # print im.shape # minr = minr if im.shape[0]>= minr else im.shape[0] # # print minr # labs=utils.parseLabelFiles(path+'/labels/labels','mouth_opening',fileNames,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) testSetMirror = fg.dataContainer(labs) for f in range(len(testSetMirror.fileNames)): testSetMirror.fileNames[f]+='M' roi=None #roi=(44,84,88,168) # eM=np.load('/home/attale00/Desktop/mouthMask.npy') # m=cv2.resize(np.uint8(eM),(256,256)); # strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) # dil = cv2.dilate(m,strel) # # m=dil>0; # # X=fg.getAllImagesFlat(path_ea,testSet.fileNames,(40,120),roi=roi) # Y=fg.getAllImagesFlat('/local/attale00/AFLW_cropped/mirrored/',testSet.fileNames,(40,120),roi=roi) # Z=np.concatenate((X,Y),axis=0) # # # perform ICA # ica = FastICA(n_components=100,whiten=True) # ica.fit(Z) # meanI=np.mean(Z,axis=0) # X1=X-meanI # Y1=Y-meanI # data=ica.transform(X1) # datam=ica.transform(Y1) # filters=ica.components_ # for i in range(len(fileNames)): # testSet.data[i].extend(data[i,:]) # testSetMirror.data[i].extend(datam[i,:]) ## # # # # strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) orientations = 9 fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = orientations, cells_per_block=(3,3),pixels_per_cell=(24,8),maskFromAlpha=False) fg.getHogFeature(testSetMirror,roi,path='/local/attale00/AFLW_cropped/mirrored/', ending='.png',orientations = orientations, cells_per_block=(3,3),pixels_per_cell=(24,8)) testSet.addContainer(testSetMirror) #pca # n_samples, n_features = X.shape # # mean_ = np.mean(X, axis=0) # X -= mean_ # U, S, V = linalg.svd(X) # explained_variance_ = (S ** 2) / n_samples # explained_variance_ratio_ = (explained_variance_ /explained_variance_.sum()) # K=V / S[:, np.newaxis] * np.sqrt(n_samples) # filters=K[:100] # data=np.dot(X,filters.T) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = 17,min_split=7,max_depth=40,n_estimators=200) #rf = svm.NuSVC() #rf = linear_model.SGDClassifier(loss='perceptron', eta0=1, learning_rate='constant', penalty=None) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,mode) elif mode in ['c']: print 'cross validation of data' classifierUtils.dissectedCV(rf,testSet) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet,rf,filters=filters,meanI=meanI) else: print 'not doing anything'
def main(mode): path = '/local/attale00/AFLW_ALL/' path_ea = '/local/attale00/AFLW_cropped/cropped3/' # fileNames = utils.getAllFiles(path_ea); labs=utils.parseLabelFiles(path+'/labels/labels','mouth_opening',fileNames,cutoffSeq='.png',suffix='_face0.labels') testSet = fg.dataContainer(labs) roi=(0,37,0,115) roi=None filters = None meanI = None components = 35 #100 #150 bins=40 orientations = 9 X=fg.getAllImagesFlat(path_ea,testSet.fileNames,(40,120),roi=roi) # X=fg.getAllImagesFlat(path_ea,testSet.fileNames,(120,40),roi=roi,resizeFactor = .5) # # perform ICA if mode not in ['s','v']: ica = FastICA(n_components=components,whiten=True) ica.fit(X) meanI=np.mean(X,axis=0) X1=X-meanI data=ica.transform(X1) filters=ica.components_ elif mode in ['s','v']: W=np.load('/home/attale00/Desktop/classifiers/patches/filterMP1.npy') m=np.load('/home/attale00/Desktop/classifiers/patches/meanIMP1.npy') X1=X-m data=np.dot(X1,W.T) for i in range(len(fileNames)): testSet.data[i].extend(data[i,:]) #strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = orientations, cells_per_block=(3,3),pixels_per_cell=(24,8),maskFromAlpha=False) fg.getColorHistogram(testSet,(0,40,40,80),path=path_ea,ending='.png',colorspace='lab',bins=bins) #fg.getImagePatchStat(testSet,path=path_ea,patchSize=(4,12)) #fg.getImagePatchStat(testSet,path='/local/attale00/AFLW_cropped/mouth_img_error/',patchSize=(4,12)) #pca # n_samples, n_features = X.shape # # mean_ = np.mean(X, axis=0) # X -= mean_ # U, S, V = linalg.svd(X) # explained_variance_ = (S ** 2) / n_samples # explained_variance_ratio_ = (explained_variance_ /explained_variance_.sum()) # K=V / S[:, np.newaxis] * np.sqrt(n_samples) # filters=K[:100] # data=np.dot(X,filters.T) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = 40,min_split=15,max_depth=70) #rf = svm.NuSVC() #rf = linear_model.SGDClassifier(loss='perceptron', eta0=1, learning_rate='constant', penalty=None) if mode in ['s','v']: print 'Classifying with loaded classifier' _classifyWithOld(path,testSet,mode) elif mode in ['c']: print 'cross validation of data' rValues = classifierUtils.dissectedCV(rf,testSet) pickle.dump(rValues,open('patches_cv_combined','w')) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet,rf,filters=filters,meanI=meanI) else: print 'not doing anything'
def main(nJobs = 1): path = '/local/attale00' fileNames = utils.getAllFiles(path+'/targets'); attribute = 'mouth' attribute_values = utils.parseLabelINIFile(path+'/mouth_labels/labels.ini',attribute); print('------------Attribute: \t'+attribute+' ---------------') for i in attribute_values: print('Value: \t'+i) print('----------------------------') print('----------parsing label files------') labs=utils.parseLabelFiles(path+'/mouth_labels','mouth',fileNames,cutoffSeq='.png',suffix='_face0.labels') print('-----computing Features-----') #make 10 bin hist for each mouth #roi = (40,200,100,200) roi = (50,190,110,402) roi2=(128,256,0,256) mouthSet = fg.dataContainer(labs) #fg.getHistogram(20,roi,hrange=(0,255),dataC = mouthSet,path = path+'/extracted/gradients/Direction/',ending='_0.png') eM=np.load('/home/attale00/Desktop/mouthMask.npy') m=cv2.resize(np.uint8(eM),(256,256)); strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) dil = cv2.dilate(m,strel) m=dil>0; # em=m[roi[0]:roi[1],roi[2]:roi[3]] # m= m !=True fg.getHogFeature(mouthSet,roi2,path=path+'/targets/grayScaleSmall/',ending=None,extraMask = None) #fg.getPixelValues(mouthSet,roi,path=path_ea+'/',ending='_0.png',mask =m, scaleFactor = 10) #fg.getColorHistogram(mouthSet,roi,path=path_ea+'/',ending='_0.png',colorspace=None,range=(1.0,255.0),bins = 20) mouthSet.targetNum=map(utils.mapMouthLabels2Two,mouthSet.target) n_estimators = range(10,180,20); max_features = range(2,22,2) max_depth = range(5,40,5) max_depth.append(100) min_split = range(1,20,2) score=[] var = [] for n in n_estimators: scoresRF = _crossValidate(mouthSet, max_depth = 20,n_estimators =n ,nJobs = nJobs,max_features = np.sqrt(len(mouthSet.data[0])),min_split = 5) score.append(scoresRF.mean()) var.append(scoresRF.std()) print scoresRF plt.errorbar(n_estimators,score,yerr=var) plt.xlabel('number of trees') # plt.ylabel('cross val score') # mouthSet2 = fg.dataContainer(labs) # roi=(256,512,0,512) # fg.getColorHistogram(mouthSet2,roi,path=path+'/targets/',ending=None,colorspace='lab',range=(1.,255.0),bins = 20) # mouthSet2.targetNum=map(utils.mapMouthLabels2Two,mouthSet2.target) # score=[] # var = [] # for n in n_estimators: # scoresRF = _crossValidate(mouthSet2, max_depth = 20,n_estimators =n ,nJobs = nJobs,max_features = np.sqrt(len(mouthSet2.data[0])),min_split = 5) # # score.append(scoresRF.mean()) # var.append(scoresRF.std()) # # print scoresRF # plt.errorbar(n_estimators,score,yerr=var) # plt.xlabel('number of trees') # plt.ylabel('cross val score') # fg.getColorHistogram(mouthSet,roi,path=path_ea+'/',ending='_0.png',colorspace='lab',range=(100.0,255.0),bins = 20) # # score=[] # var = [] # for n in n_estimators: # scoresRF = _crossValidate(mouthSet, max_depth = 20,n_estimators =n ,nJobs = nJobs,max_features = np.sqrt(len(mouthSet.data[0])),min_split = 5) # # score.append(scoresRF.mean()) # var.append(scoresRF.std()) # # print scoresRF # plt.errorbar(n_estimators,score,yerr=var) # plt.xlabel('number of trees') # plt.ylabel('cross val score') # plt.legend(['HOG','LAB','HOG+LAB']) # plt.title('20bins') plt.show() #classifier #linSVM = svm.SVC(kernel = 'linear',C=1) #this takes forever: check if that can be true #scoresLinSVM = cross_validation.cross_val_score(linSVM,data,y=targetNum,n_jobs=-1,verbose = 1) #implement random forest classifier with verbosity level # roi_narrow=(60,160,130,382) # extraMask = np.load('/home/attale00/Desktop/emptyMouthMask.npy') # # fg.getMeanAndVariance(roi_narrow,mouthSet,path_ea+'/',extraMask = extraMask,ending='_0.png') # scoresRF = _crossValidate(mouthSet,max_features = 13) # print 'Orientation and mean and cov' +str(scoresRF) return
def main(mode): path = '/local/attale00/AFLW_ALL/' path_ea = '/local/attale00/AFLW_cropped/multiPIE_cropped3/' allLabelFiles = utils.getAllFiles('/local/attale00/a_labels') labeledImages = [i[0:16]+'.png' for i in allLabelFiles] #labs=utils.parseLabelFiles(path+'/Multi-PIE/labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') labs=utils.parseLabelFiles('/local/attale00/a_labels','mouth',labeledImages,cutoffSeq='.png',suffix='_face0.labels') #labs=dict((k,v) for (k,v) in labs.iteritems() if not v.startswith('narr')) # # minr = 10000; # for f in fileNames: # im = cv2.imread(path_ea+f,-1) # if im.shape[0]!=40 or im.shape[1]!=120: # print f # print im.shape # minr = minr if im.shape[0]>= minr else im.shape[0] # # print minr # testSet = fg.dataContainer(labs) roi=(0,37,0,115) roi=None #roi=(44,84,88,168) # eM=np.load('/home/attale00/Desktop/mouthMask.npy') # m=cv2.resize(np.uint8(eM),(256,256)); # strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) # dil = cv2.dilate(m,strel) # # m=dil>0; X=fg.getAllImagesFlat(path_ea,testSet.fileNames,(40,120),roi=roi) # perform ICA if mode not in ['s','v']: ica = FastICA(n_components=100,whiten=True) ica.fit(X) meanI=np.mean(X,axis=0) X1=X-meanI data=ica.transform(X1) filters=ica.components_ elif mode in ['s','v']: W=np.load('/home/attale00/Desktop/classifiers/patches/filter2.npy') m=np.load('/home/attale00/Desktop/classifiers/patches/meanI2.npy') X1=X-m data=np.dot(X1,W.T) for i in range(len(testSet.fileNames)): testSet.data[i].extend(data[i,:]) strel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) fg.getHogFeature(testSet,roi,path=path_ea,ending='.png',extraMask = None,orientations = 5, pixels_per_cell=(24,8),cells_per_block=(3,3),maskFromAlpha=False) fg.getColorHistogram(testSet,roi,path=path_ea,ending='.png',colorspace='lab',bins=20) #fg.getImagePatchStat(testSet,path='/local/attale00/AFLW_cropped/mouth_img_error_multiPie/',patchSize =(4,12)) #pca # n_samples, n_features = X.shape # # mean_ = np.mean(X, axis=0) # X -= mean_ # U, S, V = linalg.svd(X) # explained_variance_ = (S ** 2) / n_samples # explained_variance_ratio_ = (explained_variance_ /explained_variance_.sum()) # K=V / S[:, np.newaxis] * np.sqrt(n_samples) # filters=K[:100] # data=np.dot(X,filters.T) testSet.targetNum=map(utils.mapMouthLabels2Two,testSet.target) rf=classifierUtils.standardRF(max_features = 27,min_split=13,max_depth=40) #rf = svm.NuSVC() #rf = linear_model.SGDClassifier(loss='perceptron', eta0=1, learning_rate='constant', penalty=None) if mode in ['s','v']: print 'Classifying with loaded classifier' classifierUtils.classifyWithOld(path,testSet,mode,clfPath = '/home/attale00/Desktop/classifiers/patches/rfICAHogColor') elif mode in ['c']: print 'cross validation of data' classifierUtils.dissectedCV(rf,testSet) elif mode in ['save']: print 'saving new classifier' _saveRF(testSet,rf,filters=filters,meanI=meanI) else: print 'not doing anything'
def main(mode): path = "/local/attale00/AFLW_ALL/" path_mirrored = "/local/attale00/AFLW_cropped/mirrored/" poses = aflwPose() binmax = 100 stepsize = 40 bins = range(-binmax, binmax, stepsize) poseDict = splitByPose(poses, bins=bins) testSets = {} # original Part for k, v in poseDict.iteritems(): fn = [i[0] for i in v] labs = utils.parseLabelFiles( path + "/labels/labels", "mouth_opening", fn, cutoffSeq=".png", suffix="_face0.labels" ) testSets[k] = fg.dataContainer(labs) fg.getHogFeature( testSets[k], None, path=path_ea, ending=".png", extraMask=None, orientations=9, cells_per_block=(3, 3), pixels_per_cell=(24, 8), maskFromAlpha=False, ) # mirrored part testSetsM = {} nBins = len(bins) for k, v in poseDict.iteritems(): binNumber = bins.index(k) oppositeBin = bins[nBins - 1 - binNumber] fn = [i[0] + "M" for i in poseDict[oppositeBin]] labs = utils.parseLabelFiles( path + "/labels/labels", "mouth_opening", fn, cutoffSeq=".pngM", suffix="_face0.labels" ) testSetsM[k] = fg.dataContainer(labs) fg.getHogFeature( testSetsM[k], None, path=path_mirrored, ending=".png", orientations=9, cells_per_block=(3, 3), pixels_per_cell=(24, 8), ) for k, v in poseDict.iteritems(): testSet = testSets[k] testSet.addContainer(testSetsM[k]) testSet.targetNum = map(utils.mapMouthLabels2Two, testSet.target) rf = classifierUtils.standardRF(max_features=40, min_split=12, max_depth=70) if mode in ["s", "v"]: print "Classifying with loaded classifier" _classifyWithOld(path, testSet, mode) elif mode in ["c"]: print "cross validation of data" rValues = classifierUtils.dissectedCV(rf, testSet) plt.title("Pose: {}, n: {}".format(k, len(testSet.data))) # pickle.dump(rValues,open('patches_pose_hog_{}'.format(k),'w')) elif mode in ["save"]: print "saving new classifier" _saveRF(testSet, rf, identifier=k)